Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.This article is categorized under:
Machine learning bias and fairness have recently emerged as key issues due to the pervasive deployment of data-driven decision making in a variety of sectors and services. It has often been argued that unfair classifications can be attributed to bias in training data, but previous attempts to "repair" training data have led to limited success. To circumvent shortcomings prevalent in data repairing approaches, such as those that weight training samples of the sensitive group (e.g. gender, race, financial status) based on their misclassification error, we present a process that iteratively adapts training sample weights with a theoretically grounded model. This model addresses different kinds of bias to better achieve fairness objectives, such as trade-offs between accuracy and disparate impact elimination or disparate mistreatment elimination. We show that, compared to previous fairness-aware approaches, our methodology achieves better or similar trades-offs between accuracy and unfairness mitigation on real-world and synthetic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.