Elephants are the only living representatives of the Proboscidea, a formerly diverse mammalian order whose history began with the 55-million years (mys) old Phosphatherium. Reported here is the discovery from the early late Paleocene of Morocco, ca. 60 mys, of the oldest and most primitive elephant relative, Eritherium azzouzorum n.g., n.sp., which is one of the earliest known representatives of modern placental orders. This well supported stem proboscidean is extraordinarily primitive and condylarth-like. It provides the first dental evidence of a resemblance between the proboscideans and African ungulates (paenungulates) on the one hand and the louisinines and early macroscelideans on the other. Eritherium illustrates the origin of the elephant order at a previously unknown primitive stage among paenungulates and ''ungulates.'' The primitive morphology of Eritherium suggests a recent and rapid paenungulate radiation after the Cretaceous-Tertiary boundary, probably favoured by early endemic African paleoecosystems. At a broader scale, Eritherium provides a new old calibration point of the placental tree and supports an explosive placental radiation. The Ouled Abdoun basin, which yields the oldest known African placentals, is a key locality for elucidating phylogeny and early evolution of paenungulates and other related endemic African lineages.Africa-Morocco ͉ Afrotheria ͉ Paenungulata ͉ Placentalia ͉ Proboscidea
India's Late Cretaceous fossil mammals include the only undisputed pre-Tertiary Gondwanan eutherians, such as
Deccanolestes
. Recent studies have suggested a relationship between
Deccanolestes
and African and European Paleocene adapisoriculids, which have been variably identified as stem euarchontans, stem primates, lipotyphlan insectivores, or afrosoricids. Support for a close relationship between
Deccanolestes
and any of these placental mammal clades would be unique in representing a confirmed Mesozoic record of a placental mammal. However, some paleogeographic reconstructions place India at its peak isolation from all other continents during the latest Cretaceous, complicating reconstructions of the biogeographic history of the placental radiation. Recent fieldwork in India has recovered dozens of better-preserved specimens of Cretaceous eutherians, including several new species. Here, we incorporate these new specimens into an extensive phylogenetic analysis that includes every clade with a previously hypothesized relationship to
Deccanolestes
. Our results support a robust relationship between
Deccanolestes
and Paleocene adapisoriculids, but do not support a close affinity between these taxa and any placental clade, demonstrating that
Deccanolestes
is not a Cretaceous placental mammal and reinforcing the sizeable gap between molecular and fossil divergence time estimates for the placental mammal radiation. Instead, our expanded data push Adapisoriculidae, including
Deccanolestes
, into a much more basal position than in earlier analyses, strengthening hypotheses that scansoriality and arboreality were prevalent early in eutherian evolution. This comprehensive phylogeny indicates that faunal exchange occurred between India, Africa, and Europe in the Late Cretaceous-Early Paleocene, and suggests a previously unrecognized ∼30 to 45 Myr “ghost lineage” for these Gondwanan eutherians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.