The 'cancer cell fusion' theory is controversial due to the lack of methods available to identify hybrid cells and to follow the phenomenon in patients. However, it seems to be one of the best explanations for both the origin and metastasis of primary tumors. Herein, we co-cultured lung cancer stem cells with human monocytes and analyzed the dynamics and properties of tumor-hybrid cells (THC), as well as the molecular mechanisms beneath this fusion process by several techniques: electron-microscopy, karyotyping, CRISPR-Cas9, RNA-seq, immunostaining, signaling blockage, among others. Moreover, mice models were assessed for in vivo characterization of hybrids colonization and invasiveness. Then, the presence of THCs in bloodstream and samples from primary and metastatic lesions were detected by FACS and immunofluorescence protocols, and their correlations with TNM stages established. Our data indicate that the generation of THCs depends on the expression of CD36 on tumor stem cells and the oxidative state and polarization of monocytes, the latter being strongly influenced by microenvironmental fluctuations. Highly oxidized M2-like monocytes show the strongest affinity to fuse with tumor stem cells. THCs are able to proliferate, colonize and invade organs. THC-specific cell surface signature CD36 + CD14 + PANK + allows identifying them in matched primary tumor tissues and metastases as well as in bloodstream from patients with lung cancer, thus functioning as a biomarker. THCs levels in circulation correlate with TNM classification. Our results suggest that THCs are involved in both origin and spread of metastatic cells. Furthermore, they might set the bases for future therapies to avoid or eradicate lung cancer metastasis.
Sepsis, among other pathologies, is an endotoxin tolerance (ET)-related disease. On admission, we classified 48 patients with sepsis into 3 subgroups according to the ex vivo response to lipopolysaccharide. This response correlates with the Acute Physiology and Chronic Health Evaluation (APACHE) II score and the ET degree. Moreover, the ET-related classification determines the outcome of these patients. Programmed cell death-ligand 1 (PD-L1) expression on septic monocytes is also linked with ET status. In addition to the regulation of cytokine production, one of the hallmarks of ET that significantly affects patients with sepsis is T-cell proliferation impairment or a poor switch to the adaptive response. PD-L1/programmed cell death-1 (PD-1) blocking and knockdown assays on tolerant monocytes from both patients with sepsis and the in vitro model reverted the impaired adaptive response. Mechanistically, the transcription factor hypoxia-inducible factor-1α (HIF1α) has been translocated into the nucleus and drives PD-L1 expression during ET in human monocytes. This fact, together with patient classification according to the ex vivo lipopolysaccharide response, opens an interesting field of study and potential personalized clinical applications, not only for sepsis but also for all ET-associated pathologies.
Obstructive sleep apnoea (OSA) is associated with cancer incidence and mortality. The contribution of the immune system appears to be crucial; however, the potential role of monocytes and natural killer (NK) cells remains unclear.Quantitative reverse transcriptase PCR, flow cytometry and assays were used to analyse the phenotype and immune response activity in 92 patients with OSA (60 recently diagnosed untreated patients and 32 patients after 6 months of treatment with continuous positive airway pressure (CPAP)) and 29 healthy volunteers (HV).We determined that monocytes in patients with OSA exhibit an immunosuppressive phenotype, including surface expression of glycoprotein-A repetitions predominant protein (GARP) and transforming growth factor-β (TGF-β), in contrast to those from the HV and CPAP groups. High levels of TGF-β were detected in OSA sera. TGF-β release by GARP monocytes impaired NK cytotoxicity and maturation. This altered phenotype correlated with the hypoxic severity clinical score (CT90). Reoxygenation eventually restored the altered phenotypes and cytotoxicity.This study demonstrates that GARP monocytes from untreated patients with OSA have an NK-suppressing role through their release of TGF-β. Our findings show that monocyte plasticity immunomodulates NK activity in this pathology, suggesting a potential role in cancer incidence.
Objective:To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy.Methods:CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls.Results:Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2 were significantly elevated in VZV vasculopathy CSF.Conclusions:CSF of patients with VZV vasculopathy revealed a unique profile of elevated proinflammatory cytokines, IL-8 and IL-6, along with elevated MMP-2. The relevance of these cytokines to the pathogenesis of VZV vasculopathy requires further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.