The Oscura experiment will lead the search for low-mass dark matter particles using a very large array of novel silicon Charge Coupled Devices (CCDs) with a threshold of two electrons and with a total exposure of 30 kg-yr. The R&D effort, which began in FY20, is currently entering the design phase with the goal of being ready to start construction in late 2024. Oscura will have unprecedented sensitivity to sub-GeV dark matter particles that interact with electrons, probing dark matter-electron scattering for masses down to ∼500 keV and dark matter being absorbed by electrons for masses down to ∼1 eV. The Oscura R&D effort has made some significant progress on the main technical challenges of the experiment, of which the most significant are engaging new foundries for the fabrication of the CCD sensors, developing a cold readout solution, and understanding the experimental backgrounds.
In this study, the alterations in viscoelastic and aggregation parameters of red blood cells were analyzed for usual gamma irradiation procedures for transfusion purposes. In order to determine possible hemorheological changes that may affect the health of patients and their relationship with the biochemical changes observed, the blood samples were irradiated at different doses. The results show alterations in the erythrocyte aggregation time, in the membrane surface viscosity and in the size of the aggregates in the irradiated samples, suggesting that the damage produced by the ionizing radiation affects the physical properties of red blood cell membrane at different levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.