123 Genet Resour Crop Evol (2011) 58:125-137 DOI 10.1007/s10722 -010-9601-5 currently consists of 220 accessions from 15 countries: 169 of these come from European cultivation countries, 18 from commercial areas in non EU countries, 26 from regions of minimal or relict production and/or from abandoned fields and 7 from commercial nurseries. The non-saffron Crocus collection currently comprises 352 accessions: 179 collected from the wild in 12 countries of natural distribution, 24 from donations of public and private institutions, 91 from commercial nurseries and 58 acquired from BGV-CU collection management. Here we provide a record of collections, activities concerns and current strategies for documentation, conservation, characterisation, and management of the collection as important tools for researchers with interest in these valuable genetic resources.
Worldwide emission standards are extending their requirements to cover engine operation under extreme ambient conditions and fill the gap between the type-approval and real driving conditions. The new ambient boundaries affect the engine performance and raw emissions as well as the efficiency of the exhaust aftertreatment systems. This study evaluates the impact of high altitude and low ambient temperature on the light-off temperature and conversion efficiency of an oxidation catalyst. The results are compared in a common range of exhaust mass flow and temperature with the baseline sea-level operation at 20 °C. A reduction of CO and HC conversion efficiencies was found at 2500 m and −7 °C, with a relevant increase of the light-off temperature for both of the pollutants. The analysis of the experimental data was complemented with the use of a catalyst model to identify the causes leading to the deterioration of the CO and HC light-off. The use of the model allowed for identifying, for the same exhaust mass flow and temperature, the contributions to the variation of conversion efficiency caused by the change in engine-out emissions and tailpipe pressure, which are, in turn, manifested in the variation of the reactants partial pressure and dwell time as governing parameters.
The increasing limits of standards on aerosol and gaseous emissions from internal combustion engines have led to the progressive inclusion of different exhaust aftertreatment systems (EATS) as a part of the powertrain. Regulated emissions are generally abated making use of devices based on monolithic structures with different chemical functions.
This work proposes a model for predicting conversion efficiency in multi-functional catalysts with dual-layer washcoat. The mass transfer is more relevant in these devices than in single-layer washcoats due to additional transport steps between the catalytic layers. In addition, the different reaction mechanisms between layers make the concentration of the chemical species differ in each layer. To deal with this boundary while considering the need for real-time computation, a reduced-order explicit solver for the convective diffusive reaction transport is presented for the case of dual-layer washcoats. Assuming one-dimensional quasi-steady flow, the solution procedure consisted of substituting the diffusive interfacial fluxes in the bulk gas and washcoat conservation equations by expressions that depend explicitly on the average concentration in the gas phase. The solution was then applied to model the performance of dual-layer oxidation catalysts with reductant accumulation in one washcoat layer, such as diesel oxidation catalyst (DOC) and ammonia slip catalyst (ASC) systems, during driving cycles. Firstly, the response of these catalysts was analyzed by comparing against experimental data and considering additional parameters provided by the model. Next, the importance of the mass transfer limitations was discussed to complete the analysis. The proposed model was compared with a simplified solver where the mass transfer steps were omitted, thus deteriorating the prediction capabilities in some driving cycle phases. Finally, a sensitivity study was performed to assess the impact of the mesh size on the prediction capabilities and computational requirements.
Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels' end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.