Background Patients with acute lung injury (ALI) have increased levels of pro-inflammatory mediators, which impair endothelial progenitor cell (EPC) function. Increasing the number of EPC and alleviating EPC dysfunction induced by pro-inflammatory mediators play important roles in suppressing ALI development. Because the high density lipoprotein reverse-D-4F (Rev-D4F) improves EPC function, we hypothesized that it might repair lipopolysaccharide (LPS)-induced lung damage by improving EPC numbers and function in an LPS-induced ALI mouse model. Methods LPS was used to induce ALI in mice, and then the mice received intraperitoneal injections of Rev-D4F. Immunohistochemical staining, flow cytometry, MTT, transwell, and western blotting were used to assess the effect of Rev-D4F on repairment of lung impairment, and improvement of EPC numbers and function, as well as the signaling pathways involved. Results Rev-D4F inhibits LPS-induced pulmonary edema and decreases plasma levels of the pro-inflammatory mediators TNF-α and ET-1 in ALI mice. Rev-D4F inhibited infiltration of red and white blood cells into the interstitial space, reduced lung injury-induced inflammation, and restored injured pulmonary capillary endothelial cells. In addition, Rev-D4F increased numbers of circulating EPC, stimulated EPC differentiation, and improved EPC function impaired by LPS. Rev-D4F also acted via a PI3-kinase-dependent mechanism to restore levels of phospho-AKT, eNOS, and phospho-eNOS suppressed by LPS. Conclusions These findings indicate that Rev-D4F has an important vasculoprotective role in ALI by improving the EPC numbers and functions, and Rev-D4F reverses LPS-induced EPC dysfuncion partially through PI3K/AKT/eNOS signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12931-019-1099-6) contains supplementary material, which is available to authorized users.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is recognized as a critical regulator in physiological and pathophysiological processes of atherosclerosis (AS). However, the underlying mechanism remains unclear. As the precursor cells of endothelial cells (ECs), endothelial progenitor cells (EPCs) can prevent AS development through repairing endothelial monolayer impaired by proatherogenic factors. The present study investigated the effects of S1P on the biological features of mouse bone marrow-derived EPCs and the underlying mechanism. The results showed that S1P improved cell viability, adhesion, and nitric oxide (NO) release of EPCs in a bell-shaped manner, and migration and tube formation dose-dependently. The aforementioned beneficial effects of S1P on EPCs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor of LY294002 and nitric oxide synthase (NOS) inhibitor of N’-nitro-L-arginine-methyl ester hydrochloride (L-NAME). The inhibitor of LY294002 inhibited S1P-stimulated activation of phosphorylated protein kinase B (AKT) (p-AKT) and endothelial nitric oxide synthase (eNOS) (p-eNOS), and down-regulated the level of eNOS significantly. The results suggest that S1P improves the biological features of EPCs partially through PI3K/AKT/eNOS/NO signaling pathway.
Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.
Effects of high temperature pretreatment and inoculation of Bacillus coagulans were determined relative to the physicochemical properties and bacterial community of aerobic composting of chicken manure. Chicken manure was pretreated with high temperature for 0 h (CJ), 0.5 h (T-0.5h), 1.0 h (T-1.0h), 1.5 h (T-1.5h), and 2.0 h (T-2.0h) and then inoculated with B. coagulans. Chicken manure without high temperature pretreatment was included as control (CK). The results showed that the temperature of manure in CJ, T-0.5h, T-1.0h, T-1.5h, and T-2.0h groups was 2.2 to 8.4 °C higher than the chicken manure in CK within 1 day. On day 3, the chicken manure temperature reached a peak, which was 1.5 to 7.7 °C higher than that in the CK (56.8 °C). Both inoculation of B. coagulans and high temperature pretreatment increased the abundance and diversity of the bacterial community. The abundance of Firmicutes in T-1.5h was significantly higher than that in CJ. In the temperature decreasing period, the abundance of Bacillus in T-1.5h group was significantly higher than that in the CK and CJ. Overall, it was concluded that high temperature pretreatment and B. coagulans inoculation can accelerate the temperature elevation, increase the temperature of compost, and regulate the structure of bacterial community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.