The 350-kDa sperm-binding protein (SBP), a speciesspecific sperm-binding protein, is localized in the vitelline layer of sea urchin eggs. In this study, we have shown for the first time that sperm gangliosides are ligands for the intact glycosylated SBP. Using recombinant fragments of the SBP, the N-terminal heat shock protein 110-like domain was shown to be responsible for the binding. The intact SBP could bind various gangliosides, and the binding was sialidase-sensitive and inhibited by sialyllactose, thus indicating that it is the sialic acid-binding protein. Calcium and magnesium ions were not required but they did enhance the binding activity of SBP. The observation that bacterially expressed recombinant SBP and the sialidase-treated intact glycosylated SBP lost divalent cation-dependent enhancement of binding activity suggests that the sialylated carbohydrate moieties of the SBP may be involved in this property. Furthermore, the SBP was shown to bind sperm lipid rafts, in which gangliosides are enriched, and this binding was lost upon sialidase treatment of the lipid rafts. Finally, liposomes containing the ganglioside specifically inhibited fertilization. Taken together, these results allow us to identify SBP as a member of a new class of sialic acid-binding lectin belonging to the Hsp110 family, and indicate that SBP may be involved in interaction of sperm with the vitelline layer of the egg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.