After traumatic brain injury (TBI), large amounts of red blood cells and hemolytic products are deposited intracranially creating debris in the cerebrospinal fluid (CSF). This debris, which includes heme and bilirubin, is cleared via the arachnoid granulations and lymphatic systems. However, the mechanisms by which erythrocytes and their breakdown products interfere with normal CSF dynamics remain poorly defined. The purpose of this study was to model in vitro how blood breakdown products affect arachnoid cells at the CSF-blood barrier, and the extent to which the resorption of CSF into the venous drainage system is mechanically impaired following TBI. Arachnoid cells were grown to confluency on permeable membranes. Rates of growth and apoptosis were measured in the presence of blood and lysed blood, changes in transepithelial electrical resistance (TEER) was measured in the presence of blood and hemoglobin, and small molecule permeability was determined in the presence of blood, lysed blood, bilirubin, and biliverdin. These results were directly compared with an established rat brain endothelial cell line (RBEC4) co-cultured with rat brain astrocytes. We found that arachnoid cells grown in the presence of whole or lysed erythrocytes had significantly slower growth rates than controls. Bilirubin and biliverdin, despite their low solubilities, altered the paracellular transport of arachnoid cells more than the acute blood breakdown components of whole and lysed blood. Mannitol permeability was up to four times higher in biliverdin treatments than controls, and arachnoid membranes demonstrated significantly decreased small molecule permeabilities in the presence of whole and lysed blood. We conclude that short-term (<24 h) arachnoid cell transport and long-term (>5 days) arachnoid cell viability are affected by blood and blood breakdown products, with important consequences for CSF flow and blood clearance after TBI.
The SV40-LECs provide an excellent tool for in vitro studies of properties of lymphatic endothelium, and may be suitable for in vivo transplantation studies.
Cells isolated from the anterior brain stem exhibited the same phenotype as those found in the native tissue and exhibited aspects of barrier function found in vivo. These studies suggest that an ex vivo model for the arachnoid granulation can be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.