When designing an analog front-end for neural interfacing, it is hard to evaluate the interplay of priority features that one must upkeep. Given the competing nature of design requirements for such systems a good understanding of these trade-offs is necessary. Low power, chip size, noise control, gain, temporal resolution and safety are the salient ones. There is a need to expose theses critical features for high performance neural amplifiers as the density and performance needs of these systems increases. This review revisits the basic science behind the engineering problem of extracting neural signal from living tissue. A summary of architectures and topologies is then presented and illustrated through a rich set of examples based on the literature. A survey of existing systems is presented for comparison based on prevailing performance metrics.
This paper presents the EcoChip, a new system based on state-of-the-art electro-chemical impedance (EIS)technologies allowing the growth of single strain organisms isolated from northern habitats. This portable system is a complete and autonomous wireless platform designed to monitor and cultivate microorganisms directly sampled from their natural environment, particularly from harsh northern environments. Using 96-well plates, the EcoChip can be used in the field for realtime monitoring of bacterial growth. Manufactured with highquality electronic components, this new EIS monitoring system is designed to function at a low excitation voltage signal to avoid damaging the cultured cells. The high-precision calibration network leads to high-precision results, even in the most limiting contexts. Luminosity, humidity and temperature can also be monitored with the addition of appropriate sensors. Access to robust data storage systems and power supplies is an obvious limitation for northern research. That is why the EcoChip is equipped with a flash memory that can store data over long periods of time. To resolve the power issue, a low-power microcontroller and a power management unit control and supply all electronic building blocks. Data stored in the EcoChip's flash memory can be transmitted through a transceiver whenever a receiver is located within the functional transmission range. In this paper, we present the measured performance of the system, along with results from laboratory tests in-vitro and from two field tests. The EcoChip has been utilized to collect bio-environemental data in the field from the northern soils and ecosystems of Kuujjuarapik and Puvirnituq, during two expeditions, in 2017 and 2018, respectively. We show that the EcoChip can effectively carry out EIS analyses over an excitation frequency ranging from 750 Hz to 10 kHz with an accuracy of 2.35%. The overall power consumption of the system was 140.4 mW in normal operating mode and 81 µW in sleep mode. The proper development of the isolated bacteria was confirmed through DNA sequencing, indicating that bacteria thrive in the EcoChip's culture wells while the growing conditions are successfully gathered and stored.
This paper presents the EcoChip, a new system based on state-of-the-art electro-chemical impedance (EIS)technologies allowing the growth of single strain organisms isolated from northern habitats. This portable system is a complete and autonomous wireless platform designed to monitor and cultivate microorganisms directly sampled from their natural environment, particularly from harsh northern environments. Using 96-well plates, the EcoChip can be used in the field for realtime monitoring of bacterial growth. Manufactured with highquality electronic components, this new EIS monitoring system is designed to function at a low excitation voltage signal to avoid damaging the cultured cells. The high-precision calibration network leads to high-precision results, even in the most limiting contexts. Luminosity, humidity and temperature can also be monitored with the addition of appropriate sensors. Access to robust data storage systems and power supplies is an obvious limitation for northern research. That is why the EcoChip is equipped with a flash memory that can store data over long periods of time. To resolve the power issue, a low-power microcontroller and a power management unit control and supply all electronic building blocks. Data stored in the EcoChip's flash memory can be transmitted through a transceiver whenever a receiver is located within the functional transmission range. In this paper, we present the measured performance of the system, along with results from laboratory tests in-vitro and from two field tests. The EcoChip has been utilized to collect bio-environemental data in the field from the northern soils and ecosystems of Kuujjuarapik and Puvirnituq, during two expeditions, in 2017 and 2018, respectively. We show that the EcoChip can effectively carry out EIS analyses over an excitation frequency ranging from 750 Hz to 10 kHz with an accuracy of 2.35%. The overall power consumption of the system was 140.4 mW in normal operating mode and 81 µW in sleep mode. The proper development of the isolated bacteria was confirmed through DNA sequencing, indicating that bacteria thrive in the EcoChip's culture wells while the growing conditions are successfully gathered and stored.
This paper presents the EcoChip 2, an autonomous multimodal bio-environmental sensor platform for the monitoring of microorganisms in the northern habitat. The EcoChip 2 prototype includes an array of 96-wells for the continuous monitoring of microbiological growth through a multichannel electrochemical impedance analyzer circuit. In addition, the platform includes luminosity, humidity, temperature sensors and monitoring. The developed electronic board uses an ultra-low-power microcontroller unit, a custom power management unit, a low-power wireless ISM-2.45 GHz transceiver, and a flash memory to accumulate and store the sensor data over extended monitoring periods. When a wireless base station is placed within the transmission range of the EcoChip 2, an embedded low-power wireless transceiver transmits the 96-wells impedance data and the other sensor data stored in the flash memory to the user interface. We present the measured performance of the prototype, along with laboratory test results of bacterial growth measurements inside the 96 wells in parallel. We show that the EcoChip 2 can successfully measure the impedances associated with bacterial growth over several hours using an excitation frequency of 2 kHz with power consumption of 114.6 mW under operating mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.