Purpose The purpose of this work is to compare the behavior of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in contrast-enhanced MR angiography with background suppression performed by either a Dixon-type or subtraction-type method. Theory and Methods Theoretical expressions for the SNR and CNR for both background suppression techniques were derived. The theoretical Dixon:subtraction SNR and CNR ratios were compared to empirical ratios measured from phantom and in vivo studies for Dixon techniques utilizing one, two, and three echoes. Specifically, the SNR and CNR ratios were compared as the concentration of contrast material in the blood changed. Results Empirical measurements of the SNR and CNR ratios compared favorably with the ratios predicted by theory. As the contrast concentration was reduced, the SNR advantage of the Dixon techniques increased asymptotically. In the ideal case, the SNR improvement over subtraction contrast-enhanced MR angiography was at least twofold for one- and two-echo Dixon techniques and at least a factor of 6 for the three-echo Dixon technique. Conclusion: Expressions showing a contrast concentration-dependent SNR and CNR improvement of at least a factor of two when Dixon-type contrast-enhanced MR angiography is used in place of subtraction-type contrast-enhanced MR angiography were derived and validated with phantom and in vivo experiments.
This article is based on a presentation at the meeting of the Japanese Society of Magnetic Resonance in Medicine in September 2016. The purpose is to review the technical developments which have contributed to the current status of contrast-enhanced magnetic resonance angiography (CE-MRA) and to indicate related emerging areas of study. Technical developments include MRI physics-based innovations as well as improvements in MRI engineering. These have collectively addressed not only early issues of timing and venous suppression but more importantly have led to an improvement in spatiotemporal resolution of CE-MRA of more than two orders of magnitude compared to early results. This has allowed CE-MRA to be successfully performed in virtually all vascular territories of the body. Contemporary technical areas of study include improvements in implementation of high rate acceleration, extension of high performance first-pass CE-MRA across multiple imaging stations, expanded use of compressive sensing techniques, integration of Dixon-based fat suppression into CE-MRA sequences, and application of CE-MRA sequences to dynamic-contrast-enhanced perfusion imaging.
Purpose The goal of this work is to demonstrate 1 mm through‐plane resolution in multislice T2SE MRI using kZ‐space processing of overlapping slices and show applicability in prostate MRI. MethodsMultiple overlapped slices are acquired and Fourier transformed in the slice‐select direction. The slice profile is incorporated into a Tikhonov‐regularized reconstruction. Through‐plane resolution is tested in a resolution phantom. An anthropomorphic prostate phantom is used to study the SNR, and results are compared with theoretical prediction. The proposed method is tested in 16 patients indicated for clinical prostate MRI who gave written informed consent as overseen by our IRB. The “proposed” vs. “reference” multislice images are compared using multiple evaluation criteria for through‐plane resolution. ResultsThe modulation transfer function (MTF) plots of the resolution phantom show good modulation at frequency 0.5 lp/mm, demonstrating 1 mm through‐plane resolution restoration. The SNR measurements experimentally match the theoretically predicted values. The radiological evaluation shows that the proposed method is superior to the reference method for five criteria of sharpness but inferior with respect to artifacts. ConclusionsIn conjunction with overlapped slices a kZ‐space‐based reconstruction approach can be used to improve through‐plane resolution in multislice T2SE MRI. 1 mm resolution is demonstrated from 3.2 mm thick slices. The in vivo results from prostate MRI show improved sharpness when compared to the standard multislice method.
Purpose The purpose of this work is to derive and demonstrate constrained-phase dual-echo Dixon imaging within a maximum likelihood framework solved with a regularized graph-cuts-guided optimization. Theory and Methods Dual-echo Dixon reconstruction is fundamentally underdetermined; however, adopting a constrained-phase signal model reduces the number of unknowns and the nonlinear problem can be solved under a maximum likelihood framework. Period shifts in the field map (manifesting as fat/water signal swaps) must also be corrected. Here, a regularized cost function promotes a smooth field map and is solved with a graph-cuts-guided greedy binary optimization. The reconstruction shown here is compared to two other prevalent Dixon reconstructions in experimental phantom and human studies. Results Reconstructed images of the water and fat signal are shown for a phantom study, and in vivo studies of foot/ankle, pelvis, and CE-MRA of the thighs. The method shown here compared favorably with the other two methods. Large field inhomogeneities on the order of 20 ppm were resolved, thereby avoiding the fat and water signal swaps present in images reconstructed with the other methods. Conclusion Constrained-phase dual-echo Dixon imaging solved with a regularized graph-cuts-guided optimization has been derived and demonstrated to successfully separate water and fat images in the presence of large magnetic field inhomogeneities.
Purpose To reduce slice‐to‐slice motion effects in multislice T2‐weighted fast‐spin‐echo ( T2 FSE) imaging, manifest as “scalloping” in reformats, by modification of the acquisition strategy and to show applicability in prostate MRI. Methods T2 FSE images of contiguous or overlapping slices are typically acquired using multiple passes in which each pass is comprised of multiple slices with slice‐to‐slice gaps. Combination of slices from all passes provides the desired sampling. For enhancement of through‐plane resolution with super resolution or for reformatting into other orientations, subtle ≈1 mm motion between passes can cause objectionable “scalloping” artifact. Here we address this by subdivision of each pass into multiple segments. Interleaving of segments from the multiple passes causes all slices to be acquired over substantially the same time, reducing pass‐to‐pass motion effects. This was implemented in acquiring 78 overlapped T2 FSE axial slices and studied in phantoms and in 14 prostate MRI patients. Super‐resolution axial images and sagittal reformats from the original and new segmented acquisitions were evaluated by 3 uroradiologists. Results For all criteria of sagittal reformats, the segmented acquisition was statistically superior to the original. For all sharpness criteria of axial images, although the trend preferred the original acquisition, the difference was not significant. For artifact in axial images, the segmented acquisition was significantly superior. Conclusions For prostate MRI the new segmented acquisition significantly reduces the scalloping motion artifact that can be present in reformats due to long time lags between the acquisition of adjacent or overlapped slices while retaining image sharpness in the acquired axial slices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.