Oxidoreduction of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold in aqueous solutions of surface-active sodium n-alkyl sulfates (NaCnSO4) of 6, 8, 10, and 12 carbons is investigated by cyclic voltammetry and surface plasmon resonance. The effects of surfactant micellization and alkyl chain length on the redox response of the surface-tethered ferrocenes are examined. The SAM redox electrochemistry is sensitive to the surfactant aggregation state in solution. The nonideal behavior of the sodium alkyl sulfates at concentrations above the critical micelle concentration leads to a non-Nernstian variation of the SAM redox potential with concentration. The presence of micelles in solution results in decreased anodic-to-cathodic peak separations and anodic peak full widths at half-maximum. A longer alkyl chain length results in an increased ability of the alkyl sulfate anion to ion pair with the SAM-bound ferrocenium, resulting in oxidation of the ferrocene at lower potential. A comparison of the SAM redox potential at a fixed surfactant concentration of ideal behavior suggests a 4.5 × 10(4) difference in the ion-pairing abilities of the shorter-chain C6SO4(-) and longer-chain C12SO4(-). One-half of the available SAM-bound ferrocenes are oxidized in the NaCnSO4 electrolyte. Surfactant anions adsorb and assemble onto the SAM surface by specific ion-pairing interactions between the sulfate headgroups and oxidized ferrocenium species, forming an interdigitated monolayer in which the surfactant anions alternate between a heads-down and heads-up orientation with respect to the SAM. The work presented points to applications of ferrocenylalkanethiolate SAMs as anion-selective membranes, probes of micelle formation, and surfaces for the electrochemically switchable assembly of organosulfates.
Elucidating the influence of the monolayer interface versus bulk on the macroscopic properties (e.g., surface hydrophobicity, charge transport, and electron transfer) of organic self-assembled monolayers (SAMs) chemically anchored to metal surfaces is a challenge. This article reports the characterization of prototypical SAMs of n-alkanethiolates on gold (CH3(CH2)nSAu, n = 6-19) at the macroscopic scale by electrochemical impedance spectroscopy and contact angle goniometry, and at the molecular level, by infrared reflection absorption spectroscopy. The SAM capacitance, dielectric constant, and surface hydrophobicity exhibit dependencies on both the length (n) and parity (nodd or neven) of the polymethylene chain. The peak positions of the CH2 stretching modes indicate a progressive increase in the chain conformational order with increasing n between n = 6 and 16. SAMs of nodd have a greater degree of structural gauche defects than SAMs of neven. The peak intensities and positions of the CH3 stretching modes are chain length independent but show an odd-even alternation of the spatial orientation of the terminal CH3. The correlations between the different data trends establish that the chain length dependencies of the dielectric constant and surface hydrophobicity originate from changes in the polymethylene chain conformation (bulk), while the odd-even variation arises primarily from a difference in the chemical composition of the interface related to the terminal group orientation. These findings provide new physical insights into the structure-property relation of SAMs for the design of ultrathin film dielectrics as well as the understanding of stereostructural effects on the electrical characteristics of tunnel junctions.
Subtle conformational-based distinctions in the supramolecular structure of self-assembled monolayers (SAMs) of ω-ferrocenylalkanethiolates on gold (FcC n SAu) have been shown to significantly impact their electrical and redox properties. We investigate the effect of differences in the intermolecular van der Waals interactions and molecular packing energy of FcC n SAu SAMs comprised of an odd (SAM odd ) versus even (SAM even ) number of methylenes on the electrochemical behavior for n = 6−16. Redox-induced thickness changes are investigated by electrochemical surface plasmon resonance (ESPR). Electrochemical impedance spectroscopy (EIS) under non-Faradaic conditions is used to evaluate the dielectric properties of the reduced (neutral) state of the FcC n SAu SAMs. Oxidation of the SAM-bound ferrocenes yields an effective film thickness change of 0.19 ± 0.01 nm, which is attributed to untilting of the alkyl chains. The SAMs manifest odd−even differences in the apparent redox potential, and hence in the thermodynamics of the redox reaction, across the chain lengths n = 6−16 investigated. By contrast, odd−even alternations in the oxidation-induced resonance angle change measured by ESPR and SAM double-layer capacitance determined by EIS are only observed beginning at n = 9 or 10. We show that the odd−even effects in the resonance angle and SAM capacitance are related to a difference in the dielectric constants of SAM odd and SAM even . The chain length dependencies of the measured parameters are discussed in the context of the SAM structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.