The enhanced catalytic activity of difluoroboronate ureas proved to be essential as an acidity amplifier to promote metal-free O-H and S-H insertion reactions of α-aryldiazoacetates in high yield. This methodology was found to be generally applicable to a broad substrate scope and presents a conceptually new approach for organocatalytic diazo insertion reactions. Mechanistic investigations suggest that the reaction pathway involves a urea-induced protonation of the α-aryldiazoester.
Hydrogen-bond-donor catalysts enable a variety of formal insertion reactions of diazo compounds. The role of the catalyst in the reaction system may vary depending on several factors, including the nucleophilicity of the diazo compound and the acidity of the insertion partner. Ureas and phosphoric acid derivatives can offer complementary reactivity patterns when selected as catalysts for selected O-H and S-H insertion reactions of aryl-and diazo-substituted esters.
A difluoroboronate substituted urea is shown to be an efficient catalyst for O—H and S—H insertion reactions of α‐aryldiazoacetates to produce a wide variety of α‐acyloxyesters and α‐mercaptoesters, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.