The RAD6 gene of Saccharomyces cerevisiae encodes a 20 kd ubiquitin conjugating (E2) enzyme that is required for DNA repair, DNA damage‐induced mutagenesis, and sporulation. Here, we demonstrate a novel activity of RAD6 protein‐‐its ability to mediate protein degradation dependent on the N‐end‐recognizing ubiquitin protein ligase (E3). In reaction mixtures containing E1, E3 and the ubiquitin specific protease from rabbit reticulocytes, RAD6 is as effective as mammalian E214k in E3 dependent ubiquitin‐‐protein conjugate formation and subsequent protein degradation. The ubiquitin conjugating activity of RAD6 is required for these reactions as indicated by the ineffectiveness of the rad6 Ala88 and rad6 Val88 mutant proteins, which lack the ability to form a thioester adduct with ubiquitin and therefore do not conjugate ubiquitin to substrates. We also show that the highly acidic carboxyl‐terminus of RAD6 is dispensable for the interaction with E3, and that purified S. cerevisiae E2(30k), product of the UBC1 gene, does not function with E3. These findings demonstrate a specific interaction between RAD6 and E3, and highlight the strong conservation of the ubiquitin conjugating system in eukaryotes. We suggest a function for RAD6 mediated E3 dependent protein degradation in sporulation, and discuss the possible role of this activity during vegetative growth.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.
Covalent conjugation of ubiquitin to intracellular proteins is a signal for degradation by the 26S protease. Conjugation is usually accomplished by the sequential action of activating (E1), conjugating (E2), and ligase (E3) enzymes. Each of these enzymes forms a covalent thiol ester with ubiquitin as part of its catalytic cycle. In most cases, the apparent role of the ubiquitin conjugating enzyme (E2) is to transfer ubiquitin from the E1 active site to the E3 active site. Ubiquitin is then delivered from E3 to the substrate lysine residue. An unusually large, reticulocyte-specific enzyme, known as E2-230K, is unique among the large family of E2 enzymes is being susceptible to inhibition by inorganic arsenite [Klemperer et al. (1989) Biochemistry 28, 6035-6041]. We show that phenylarsenoxides potently inhibit E2-230K, apparently by binding to vicinal Cys residues of the enzyme: bound aminophenylarsenoxide partially protects the enzyme against inactivation by N-ethylmalemide (NEM), and prior enzyme inactivation with NEM blocks enzyme binding to immobilized phenylarsenoxide. Studies on the mechanistic basis of inhibition showed that a concentration of (aminophenyl)arsenoxide that produced complete inhibition of steady-state turnover had no effect on the turnover of the preformed E2-ubiquitin adduct. However, when the enzyme was preincubated with this concentration of inhibitor prior to initiation of adduct formation, the level of E2-associated ubiquitin was reduced by 60%. These results are consistent with a model in which two Cys residues of the enzyme sequentially form thiol esters with ubiquitin and the second of these Cys residues is bound to arsenic in the enzyme-inhibitor complex. In this model, E2-230K functions as an E2-E3 hybrid.
As recently characterized, following s.c. implantation into syngeneic C57BL/6 mice, E0771 tumor invades locally into dermal layers and peritoneum, metastasizes to the lung, and induces a nonspecific immunosuppression in the host. Using this breast medullar adenocarcinoma model, a therapy consisting of a single moderate dose of doxorubicin followed by twice daily moderate doses of interleukin-2 for 30 days was examined for efficacy and mechanism of action when given to animals with established disease. This combination treatment, but not combinants alone, resulted in tumor-free long-term survival of 40% of the mice without significant toxicity and 83% of survivors had immune memory specific for E0771 cells. Treatment also decreased immune suppression induced by E0771 tumor. Full response to treatment required functional CD8 + T cells, whereas depletion of natural killer cells caused only a reduction in response rate. A serum ''biomarker'' profile that correlated with, and seemed predictive of, response to treatment was identified by nuclear magnetic resonance-based metabonomic analysis. The efficacy of this nontoxic treatment and the potential to be able to predict which individual is responding to treatment are characteristics that make this chemoimmunotherapy attractive for clinical testing.
To examine the basis of the immune modulation induced by the anticancer agent doxorubicin (DOX), the immunophenotype, tumoricidal activity, cytokine protein and mRNA expression were determined using peritoneal exudate cells (PEC) from saline-treated (untreated) and DOX-treated mice. A greater percentage of PEC from DOX-treated mice than from untreated mice were adherent to plastic, had characteristics of granulocytes, and were positive for the NK1.1, CD11b/Mac-1, and CD3 markers. DOX decreased the percentage of CD45R/B220+ cells. PEC from DOX-treated mice had greater tumoricidal potential than those from untreated mice since IL2, LPS, or IFNgamma alone increased the cytolytic activity of PEC from DOX-treated mice, whereas PEC from untreated mice required both LPS and IFNgamma to become cytolytic. DOX treatment modulated the expression of specific cytokines. Following stimulation in culture, PEC from DOX-treated mice produced more TNF, IL1, and IFNgamma than PEC from untreated mice. DOX treatment increased the levels of TNF, but not IL1, mRNA and decreased the levels of IL6 mRNA and protein. These data demonstrate that a single DOX injection induces specific effects in PEC and, as a consequence, increases the tumoricidal potential of cells of the macrophage and natural killer types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.