Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, highaltitude, limestone sinkholes have both experienced extreme temperature minima below Ϫ50ЊC and both develop strong nighttime inversions. On undisturbed clear nights, temperature inversions reach to 120-m heights in both sinkholes but are much stronger in the drier Rocky Mountain basin (24 vs 13 K). Inversion destruction takes place 2.6-3 h after sunrise in these basins and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over heated sidewalls. A conceptual model of this destruction is presented, emphasizing the asymmetry of the boundary layer development around the basin and the effects of solar shading by the surrounding ridgeline. Differences in inversion strengths and postsunrise heating rates between the two basins are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole. Inversions in the small basins break up more quickly following sunrise than for previously studied valleys. The pattern of inversion breakup in the non-snow-covered basins is the same as that reported in snow-covered Colorado valleys. The similar breakup patterns in valleys and basins suggest that along-valley wind systems play no role in the breakups, since the small basins have no along-valley wind system.
Because sinkholes are an excellent natural laboratory for studying processes leading to the formation, maintenance, and dissipation of temperature inversions, an extended set of meteorological field experiments was conducted in limestone sinkholes of various sizes and shapes in the eastern Alps during the period from 17 October 2001 through 4 June 2002. The experiments were conducted in an area surrounding the Gruenloch Sinkhole, which in earlier years had recorded the lowest surface minimum temperature in Central Europe, −52.6°C. A dense array of surface temperature sensors and three automatic weather stations were operated continuously during the experimental period, and special experiments enhanced with tethersondes and other equipment were conducted from 2 to 4 June 2002. An overview of the experiments is presented and first results are given.
Observations of low-level jets (LLJs) at the Howland AmeriFlux site in the USA and the jet's impact on nocturnal turbulent exchange and scalar fluxes over a tall forest canopy are discussed. Low-frequency motions and turbulent bursts characterize moderately strong LLJs, whereas low-frequency motions are suppressed during periods with strong LLJs and enhanced shear. An analysis based on the shear-sheltering hypothesis seeks to elucidate the effect of LLJs on flux measurements. In the absence of shear sheltering, large eddies penetrate the roughness sublayer causing enhanced mixing while during periods with shear sheltering, mixing is reduced. In the absence of the latter, 'upside-down' eddies are primarily responsible for the enhanced velocity variances, scalar and momentum fluxes. The integral length scales over the canopy are greater than the canopy height. The variance spectra and cospectra from the wavelet analysis indicate that large eddies (spatial scale greater than the low-level jet height) interact with active canopy-scale turbulence, contributing to counter-gradient scalar fluxes.
Abstract. The behaviour of perennial ice masses in karst caves in relation to the outside climate is still not well understood, though a significant potential of the cave-ice for paleo-climate reconstructions could be expected. This study investigates the relationship between weather patterns inside and outside the cave Eisriesenwelt (Austrian Alps) and icesurface changes of the ice-covered part of the cave from meteorological observations at three sites (outside the cave, entrance-near inside and in the middle section of the cave) including atmospheric and ice surface measurements as well as an ablation stake network. Whereas ice loss in summer was a general feature from stake measurements for almost all measurement sites in the cave in 2007, 2008 and 2009 (values up to −15 cm yr −1 ), a clear seasonal signal of ice accumulation (e.g. in spring as expected from theory) was not observed. It is shown that under recent climate the cave ice mass balance is more sensitive to winter climate for the inner measurement site and sensitive to winter and summer climate for the entrance-near site. Observed ice surface changes can be well explained by cave atmosphere measurements, indicating a clear annual cycle with weak mass loss in winter due to sublimation, stable ice conditions in spring until summer (autumn for the inner measurement site) and significant melt in late summer to autumn (for the entrance-near site). Interestingly, surface ice melt did not contribute to ablation at the inner site. It is obvious from the spatial sample of ice surface height observations that the ice body is currently in rather balanced state, though the influence of show-cave management on ice mass-balance could not be clearly quantified (but a significant input on accumulation for some parts of the cave is rather plausible).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.