Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFe2O4 nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal’s feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs’ half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.
Pharmacomagnetography involves the simultaneous assessment of solid dosage forms (SDFs) in the human gastrointestinal (GI) tract and the drug plasmatic concentration, using a biomagnetic technique and pharmacokinetics analysis. This multi-instrumental approach helps the evaluation, as GI variables can interfere with the drug delivery processes. This study aimed to employ pharmacomagnetography to evaluate the influence of omeprazole on the drug release and absorption of metronidazole administered orally in magnetic-coated tablets. Magnetic-coated tablets, coated with Eudragit® E-100 (E100) and containing 100 mg of metronidazole, were produced. For the in vivo experiments, 12 volunteers participated in the two phases of the study (placebo and omeprazole) on different days to assess the bioavailability of metronidazole. The results indicated a shift as the pH of the solution increased and a delay in the dissolution of metronidazole, showing that the pH increase interferes with the release processes of tablets coated with E100. Our study reinforced the advantages of pharmacomagnetography as a tool to perform a multi-instrumental correlation analysis of the disintegration process and the bioavailability of drugs.
The identification of gastrointestinal (GI) motility disorders requires the evaluation of regional GI transit, and the development of alternative methodologies in animals has a significant impact on translational approaches. Therefore, the purpose of this study was to validate an easy and low-cost methodology (alternate current biosusceptometry – ACB) for the assessment of regional GI transit in rats through images. Rats were fed a test meal containing magnetic tracer and phenol red, and GI segments (stomach, proximal, medial and distal small intestine, and cecum) were collected to assess tracer’s retention at distinct times after ingestion (0, 60, 120, 240, and 360 min). Images were obtained by scanning the segments, and phenol red concentration was determined by the sample’s absorbance. The temporal retention profile, geometric center, gastric emptying, and cecum arrival were evaluated. The correlation coefficient between methods was 0.802, and the temporal retention of each segment was successfully assessed. GI parameters yielded comparable results between methods, and ACB images presented advantages as the possibility to visualize intrasegmental tracer distribution and the automated scan of the segments. The imaging approach provided a reliable assessment of several parameters simultaneously and may serve as an accurate and sensitive approach for regional GI research in rats.
Background Non-invasive magnetic imaging techniques are necessary to assist magnetic nanoparticles in biomedical applications, mainly detecting their distribution inside the body. In Alternating Current Biosusceptometry (ACB), the magnetic nanoparticle's magnetization response under an oscillating magnetic field, which is applied through an excitation coil, is detected with a balanced detection coil system. Results We built a Multi-Channel ACB system (MC-ACB) containing nineteen pick-up coils and obtained 2D quantitative images of magnetic nanoparticle distributions by solving an inverse problem. We reconstructed the magnetic nanoparticles spatial distributions in a field of view of 14 × 14 cm2 with a spatial resolution of 2.0 cm and sensitivity in the milligram scale. A correlation coefficient between quantitative reconstructed and nominal magnetic nanoparticle distributions above 0.6 was found for all measurements. Conclusion Besides other interesting features such as sufficient large field of view dimension for mice and rat studies, portability, and the ability to assess the quantitative magnetic nanoparticles distributions in real-time, the MC-ACB system is a promising tool for quantitative imaging of magnetic nanoparticles distributions in real-time, offering an affordable setup for easy access in clinical or laboratory environments.
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.