The ongoing emission of greenhouse gases is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways in which human health, water, food, economy, infrastructure, and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea level rise, and changes in natural land cover and ocean chemistry. By 2100, the world's population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if greenhouse gasses are aggressively reduced or three if they are not, with some tropical coastal areas facing up to six hazards concurrently. These findings highlight that greenhouse gas emissions pose a broad threat to humanity by simultaneously intensifying many hazards that have been harmful to numerous aspects of human life.Ongoing greenhouse gas emissions are simultaneously shifting many elements of Earth's climate beyond thresholds that can impact humanity 1 . By affecting the balance between incoming solar radiation and outgoing infrared radiation, man-made greenhouse gases are increasing the Earth's energy budget ultimately leading to warming 1 . Given interconnected physics, warming can affect other aspects of the Earth's climate system 2 . For instance, by enhancing water evaporation and increasing the air's capacity to hold moisture, warming can lead to drought in commonly dry places, in turn ripening conditions for wildfires and heatwaves when heat transfer from water evaporation ceases. There are opposite responses in commonly humid places where constant evaporation leads to more precipitation, which is commonly followed by floods due to soil saturation. The oceans have the added effect of sea warming, which enhances evaporation and wind speeds, intensifying downpours and the strength of storms, whose surges can be aggravated by sea level rise resulting from the larger volume occupied by warmed water molecules and melting land ice. Other inter-related changes in the ocean include acidification as CO2 mixes with water to form carbonic acid, and reduced oxygen due to warming reducing oxygen solubility and affecting circulation patterns and the mixing of surface waters rich in oxygen with deeper oxygen-poor water. These climate hazards and their impacts on human societies occur naturally but are being nontrivially intensified by man-made greenhouse gas emissions, as demonstrated by an active research on detection and attribution (discussed under Caveats in the Methods section). With few exceptions 3 , changes in these hazards have been studied in isolation whereas impact assessments have commonly focused on specific aspects of human life. Unfortunately, the failure to integrate available information most likely underestimates the impacts of climate change because i) one hazard may be important in one place but not another, ii) strong CO2 reductions may curb some but not all hazards (See Fig. S1), and iii) not all aspects of human systems are equally challenge...
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
The genus Symbiodinium encompasses a group of unicellular, photosynthetic dinoflagellates that are found free living or in hospite with a wide range of marine invertebrate hosts including scleractinian corals. We present GeoSymbio, a hybrid web application that provides an online, easy to use and freely accessible interface for users to discover, explore and utilize global geospatial bioinformatic and ecoinformatic data on Symbiodinium-host symbioses. The novelty of this application lies in the combination of a variety of query and visualization tools, including dynamic searchable maps, data tables with filter and grouping functions, and interactive charts that summarize the data. Importantly, this application is hosted remotely or 'in the cloud' using Google Apps, and therefore does not require any specialty GIS, web programming or data programming expertise from the user. The current version of the application utilizes Symbiodinium data based on the ITS2 genetic marker from PCR-based techniques, including denaturing gradient gel electrophoresis, sequencing and cloning of specimens collected during 1982-2010. All data elements of the application are also downloadable as spatial files, tables and nucleic acid sequence files in common formats for desktop analysis. The application provides a unique tool set to facilitate research on the basic biology of Symbiodinium and expedite new insights into their ecology, biogeography and evolution in the face of a changing global climate. GeoSymbio can be accessed at https://sites.google.com/site/geosymbio/.
It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.