We present the WCCR10 data set of 10 ligand dissociation energies of large cationic transition metal complexes for the assessment of approximate exchange-correlation functionals. We analyze nine popular functionals, namely BP86, BP86-D3, B3LYP, B3LYP-D3, B97-D-D2, PBE, TPSS, PBE0, and TPSSh by mutual comparison and by comparison to experimental gas-phase data measured with well-known precision. The comparison of all calculated data reveals a large, system-dependent scattering of results with nonnegligible consequences for computational chemistry studies on transition metal compounds. Considering further the comparison with experimental results, the nonempirical functionals PBE and TPSS turn out to be among the best functionals for our reference data set. The deviation can be lowered further by including Hartree-Fock exchange. Accordingly, PBE0 and TPSSh are the two most accurate functionals for our test set, but also these functionals exhibit deviations from experimental results by up to 50 kJ mol(-1) for individual reactions. As an important result, we found no functional to be reliable for all reactions. Furthermore, for some of the ligand dissociation energies studied in this work, invoking semiempirical dispersion corrections yields results which increase the deviation from experimental results. This deviation increases further if structure optimization including such dispersion corrections is performed, although the contrary should be the case, pointing to the need to develop the currently available dispersion corrections further. Finally, we compare our results to other benchmark studies and highlight that the performance assessed for different density functionals depends significantly on the reference molecule set chosen.
A general reaction mechanism describes the qualitative change in chemical topology along the reaction pathway. On the basis of this principle, we present a method to characterize intramolecular substituent permutation in pentavalent compounds. A full description of the geometry around five-coordinate atoms using internal coordinates enables the analysis of the structural changes along the stereomutational intrinsic reaction coordinate. The fluxional behavior of experimentally known pentavalent phosphoranes, silicates, and transition-metal complexes has been investigated by density functional theory calculations, and three principal mechanisms have been identified: Berry pseudorotation, threefold cyclic permutation, and half-twist axial-equatorial interchange. The frequently cited turnstile rotation is shown to be equivalent to the Berry pseudorotation. In combination with graph theory, this approach provides a means to systematically investigate the stereomutation of pentavalent molecules and potentially identify hitherto-unknown mechanisms.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The exceptional stability of recently reported pentaorganosilicates is investigated by bond energy analyses. Experimental coupling constants are used to probe their electronic structure, entailing bonds with mixed ionic-covalent character. Our analyses reconfirm that the axial bonds are more prone to heterolytic cleavage than are the equatorial bonds. Aryl substituents provide substantial electronic stabilization by charge delocalization, but cause steric crowding due to ortho-hydrogen repulsion. In contrast, silicates with two ax,eq biaryl groups are not congested. The remaining substituent is confined to an equatorial site, where it is insensitive to elimination. These concepts adequately explain the experimentally observed stability trends and are valuable for designing other stable pentaorganosilicates.
Energy-resolved collision-induced dissociation experiments using tandem mass spectrometry are reported for an phenylpalladium N-heterocyclic carbene (NHC) complex. Reductive elimination of an NHC ligand as a phenylimidazolium ion involves a barrier of 30.9(14) kcal mol(-1), whereas competitive ligand dissociation requires 47.1(17) kcal mol(-1). The resulting three-coordinate palladium complex readily undergoes reductive C-C coupling to give the phenylimidazolium pi complex, for which the binding energy was determined to be 38.9(10) kcal mol(-1). Density functional calculations at the M06-L//BP86/TZP level of theory are in very good agreement with experiment. In combination with RRKM modeling, these results suggest that the rate-determining step for the direct reductive elimination process switches from the C-C coupling step to the fragmentation of the resulting sigma complex at low activation energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.