Swarm robotics has experienced a rapid expansion in recent years, primarily fueled by specialized multi-robot systems developed to achieve dedicated collective actions. These specialized platforms are, in general, designed with swarming considerations at the front and center. Key hardware and software elements required for swarming are often deeply embedded and integrated with the particular system. However, given the noticeable increase in the number of low-cost mobile robots readily available, practitioners and hobbyists may start considering to assemble full-fledged swarms by minimally retrofitting such mobile platforms with a swarm-enabling technology. Here, we report one possible embodiment of such a technology-an integrated combination of hardware and software-designed to enable the assembly and the study of swarming in a range of general-purpose robotic systems. This is achieved by combining a modular and transferable software toolbox with a hardware suite composed of a collection of low-cost and off-theshelf components. The developed technology can be ported to a relatively vast range of robotic platforms-such as land and surface vehicles-with minimal changes and high levels of scalability. This swarm-enabling technology has successfully been implemented on two distinct distributed multi-robot systems, a swarm of mobile marine buoys and a team of commercial terrestrial robots. We have tested the effectiveness of both of these distributed robotic systems in performing collective exploration and search scenarios, as well as other classical cooperative behaviors. Experimental results on different swarm behaviors are reported for the two platforms in uncontrolled environments and without any supporting infrastructure. The design of the associated software library allows for a seamless switch to other cooperative behaviors-e.g., leader-follower heading consensus and collision avoidance, and also offers the possibility to simulate newly designed collective behaviors prior to their implementation onto the platforms. This feature greatly facilitates behavior-based design, i.e., the design of new swarming behaviors, with the possibility to simulate them prior to physically test them.
Abstract. We present a novel approach to developing a vehicle communication platform consisting of a low-cost, open-source hardware for moving vehicle data to a secure server, a Web Application Programming Interface (API) for the provision of third-party services, and an intuitive user dashboard for access control and service distribution. The CloudThink infrastructure promotes the commoditization of vehicle telematics data by facilitating easier, flexible, and more secure access. It enables drivers to confidently share their vehicle information across multiple applications to improve the transportation experience for all stakeholders, as well as to potentially monetize their data. The foundations for an application ecosystem have been developed which, taken together with the fair value for driving data and low barriers to entry, will drive adoption of CloudThink as the standard method for projecting physical vehicles into the cloud. The application space initially consists of a few fundamental and important applications (vehicle tethering and remote diagnostics, road-safety monitoring, and fuel economy analysis) but as CloudThink begins to gain widespread adoption, the multiplexing of applications on the same data structure and set will accelerate its adoption.
Understanding how people move in the urban area is important for solving urbanization issues, such as traffic management, urban planning, epidemic control, and communication network improvement. Leveraging recent availability of large amounts of diverse crowdsensed data, many studies have made contributions to this field in various aspects. They need proper review and summary. In this paper, therefore, we first review these recent studies with a proper taxonomy with corresponding examples. Then, based on the experience learnt from the studies, we provide a comprehensive tutorial for future research, which introduces and discusses popular crowdsensed data types, different human mobility subjects, and common data preprocessing and analysis methods. Special emphasis is made on the matching between data types and mobility subjects. Finally, we present two research projects as case studies to demonstrate the entire process of understanding urban human mobility through crowdsensed data in city-wide scale and building-wide scale respectively. Beyond demonstration purpose, the two case studies also make contributions to their category of certain crowdsensed data type and mobility subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.