Recovery of motor function following stroke is believed to be supported, at least in part, by functional compensation involving residual neural tissue. The present study used a rodent model of focal ischemia and intracortical microstimulation (ICMS) to examine the behavioral and physiological effects of cortical stimulation in combination with motor rehabilitation. Adult rats were trained to criterion on a single pellet reaching task before ICMS was used to derive maps of movement representations within forelimb motor cortex contralateral to the trained paw. All animals then received a focal ischemic infarct within the motor map. A cortical surface electrode was implanted over the motor cortex. Low levels of electrical stimulation were applied during rehabilitative training on the same reaching task for 10 days and ICMS used to derive a second motor map. Results showed that both monopolar and bipolar cortical stimulation significantly enhanced motor recovery and increased the area of cortex from which microstimulation movements could be evoked. The results demonstrate the behavioral and neurophysiological benefits of cortical stimulation in combination with rehabilitation for recovery from stroke.
The functional organization of adult cerebral cortex is characterized by the presence of highly ordered sensory and motor maps. Despite their archetypical organization, the maps maintain the capacity to rapidly reorganize, suggesting that the neural circuitry underlying cortical representations is inherently plastic. Here we show that the circuitry supporting motor maps is dependent upon continued protein synthesis. Injections of two different protein synthesis inhibitors into adult rat forelimb motor cortex caused an immediate and enduring loss of movement representations. The disappearance of the motor map was accompanied by a significant reduction in synapse number, synapse size, and cortical field potentials and caused skilled forelimb movement impairments. Further, motor skill training led to a reappearance of movement representations. We propose that the circuitry of adult motor cortex is perpetually labile and requires continued protein synthesis in order to maintain its functional organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.