Since focal adhesion kinase (FAK) was proposed as a mediator of the inflammatory response, we have investigated the role of this molecule in the release of inflammatory cytokines by cultured human periodontal ligament fibroblasts (HPDLFs), cells that are thought to be important in the patient's response to periodontal infection. Human periodontal ligament fibroblasts were stimulated by tumor necrosis factor alpha (TNF-α) and its effects on interleukin (IL)-6 and IL-8 release were measured by ELISA. Expression of matrix metalloproteinase 2 (MMP-2) protein was analysed by western blotting. The levels of IL6, IL8, and MMP2 mRNA were evaluated by real-time PCR. Tumor necrosis factor alpha dose-dependently induced the phosphorylation of FAK, whereas small interfering FAK (siFAK) inhibited TNF-α-induced FAK phosphorylation. Tumor necrosis factor alpha also stimulated the production of IL-6, IL-8, and MMP-2 in a dose-dependent manner. Knockdown of FAK significantly suppressed TNF-α-induced expression of IL6 and IL8 mRNA and release of IL-6 and IL-8 protein in HPDLFs. Similarly, MMP-2 down-regulation was significantly prevented by siFAK. Our results strongly suggest that knockdown of FAK can decrease the production of TNF-α-induced IL-6, IL-8, and MMP-2 in HPDLFs. These effects may help in understanding the mechanisms that control expression of inflammatory cytokines in the pathogenesis of periodontitis.
Bruton's tyrosine kinase (BTK) is involved in the diabetogenic process and cerebral ischemic injury. However, it remained unclear whether BTK inhibition has remedial effects on ischemia/reperfusion (I/R) injury complicated with diabetes. We aim to investigate the regulatory role and potential mechanism of ibrutinib, a selective inhibitor of BTK, in cerebral I/R injured diabetic mice. The cytotoxicity and cell vitality tests were performed to evaluate the toxic and protective effects of ibrutinib at different incubating concentrations on normal PC12 cells or which were exposed to high glucose for 24 h, followed by hypoxia and reoxygenation (H/R), respectively. Streptozotocin (STZ) stimulation-induced diabetic mice were subjected to 1 h ischemia and then reperfusion. Then the diabetic mice received different dosages of ibrutinib or vehicle immediately and 24 h after the middle cerebral artery occlusion (MCAO). The behavioral, histopathological, and molecular biological tests were then performed to demonstrate the neuroprotective effects and mechanism in I/R injured diabetic mice. Consequently, Ibrutinib improved the decreased cell viability and attenuated oxidative stress in the high glucose incubated PC12 cells which subjected to H/R injury. In the I/R injured diabetic mice, ibrutinib reduced the cerebral infarct volume, improved neurological deficits, ameliorated pathological changes, and improved autophagy in a slightly dose-dependent manner. Furthermore, the expression of PI3K/AKT/mTOR pathwayrelated proteins were significantly upregulated by ibrutinib treatment. In summary, our finding collectively demonstrated that Ibrutinib could effectively ameliorate cerebral ischemia/reperfusion injury via ameliorating inflammatory response, oxidative stress, and improving autophagy through PI3K/Akt/mTOR signaling pathway in diabetic mice.
This study aims to investigate the levels of SLIT3 in gingival crevicular fluid (GCF) of healthy and periodontal disease subjects, and their correlations to periodontal disease. A total of 45 periodontal patients and 45 periodontally healthy volunteers were enrolled. The clinical parameters, radiographic bone loss and the levels of SLIT3, receptor activator of NF‐κB ligand (RANKL) and osteoprotegerin (OPG) in GCF were measured. The prevalences of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque were also analyzed. The expression of SLIT3 and RANKL was detected in the periodontium of experimental periodontitis in rats and lipopolysaccharide (LPS)‐induced mouse macrophage. The total amounts and concentrations of SLIT3 and RANKL were significantly higher in periodontitis than those in healthy, while the level of OPG was significantly lower (p < .05). Significant positive correlations were observed between the level of GCF SLIT3 and clinical attachment level and radiographic bone loss (p < .05). There existed a significant positive correlation between SLIT3 and RANKL (p < .05). Increased expression of SLIT3 and RANKL was observed in the periodontium of periodontal rats. SLIT3 expression was induced by LPS stimulation in macrophages. These results suggest that SLIT3 may act as a diagnostic indicator of periodontal disease and should be further investigated.
Background: Oral Lichen Planus (OLP) is one of the most common oral mucosal diseases. However, the current diagnostic method for OLP has limitations, and sometimes it is easy to be misdiagnosed. Salivary metabolomics may provide new ideas for the diagnosis of OLP. Objective: To identify the biomarkers for the early detection of OLP. Methods: A non-targeted metabolomic analysis method was established based on UHPLC-Q-Orbitrap HRMS (Ultra-performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry) to analyze the differential metabolites in saliva samples of patients with OLP and healthy subjects. Saliva samples were collected from 120 OLP patients and 125 healthy subjects. Results: A total of 19 differential metabolites were identified, including 6 amino acid metabolites, 2 carnitines, 2 lipid metabolites and 9 other metabolites. The integrated biomarkers were constructed by 3 metabolites according to Receiver Operating Characteristic (ROC). Meanwhile, multiple metabolic pathways were found to be involved in the occurrence and development of OLP. Conclusion: Metabolomics can be used to characterize the characteristics of metabolic disorders in patients with OLP, which is also helpful to the early diagnosis of OLP and reveal the pathological process of OLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.