Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated
A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for 'greener' magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB 2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.