A preliminary evaluation of yeast fermented palm wine sourced from Imo State in Nigeria was carried out to establish compounds that contribute to the distinct flavor of the beverage and to determine if the product abundance is affected when the drink is supplemented with Sacoglottis gabonensis. Palm wine samples from two different trees Elaeis sp. and Raphia sp. (pH less than 5) that contain Saccharomyces cerevisiae and other yeast species identified by sequencing the D1/D2 domain of the 26S rRNA genes were used. Evaluation was carried out using high performance liquid chromatography (HPLC), atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) and gas chromatography-mass spectrometry (GC-MS). Samples contained 5.9-11.6, 2.2-7.1, 4.2-43.0, and 4.4-43.7 g/L of acetic acid, lactic acid, ethanol and glucose, respectively. Ethyl acetate, acetic acid and ethanol had the most aroma intensity and an assessment on the yeast metabolome database showed that 23 out of the 31 products detected were present in the database. Addition of Sacoglottis gabonensis supplement to a Raphia sp. palm wine sample showed lower abundance of acetoin, acetic acid, methylpropyl lactate, ethyl octanoate and propyl acetate. We conclude that Sacoglottis gabonensis supplementation could suppress specific compounds during palm wine fermentation. This knowledge could be applied in new product development for the beverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.