Tanaman jeruk adalah tanaman buah tahunan yang berasal dari ASIA. Pembudidayaan tanaman jeruk dipengaruhi oleh berbagai faktor yaitu, teknik budidaya, kondisi lingkungan serta serangan hama dan penyakit. Dari ketiga faktor tersebut yang sampai sekarang menjadi masalah adalah gangguan hama dan penyakit. Rendahnya produktivitas tanaman jeruk disebabkan oleh serangan hama. Penelitian ini akan mengidentifikasi serangan hama pada tanaman jeruk dengan cara menerapkan Sistem Case Based Reasoning. Perhitungan similaritas yang digunakan dalam sistem Case Base Reasoning adalah metode Euclidean Distance. Hasil penelitian ini menunjukkan Sistem Case Based Reasoning ini dapat digunakan untutk membantu user mengidentifikasi hama yang menyerang tanaman jeruk. Problem baru dikatakan similar (mirip) 100% dengan kasus yang lama apabila nilai similaritas dari d(p,q) sama dengan 1 sedangkan tidak similar apabila nilai d(p,q) sama dengan 0. Nilai similaritas antara 0 sampai dengan 1.
Penyakit Pneumonia merupakan penyebab utama kematian balita di dunia. Diperkirakan ada 1,8 juta atau 20% dari kematian anak diakibatkan oleh Pneumonia, melebihi kematian akibat AIDS, malaria dan tuberkulosis terutama adalah Pneumonia. Terbatasnya kemampuan akomodasi dan pelayanan dari paramedis untuk pemeriksaan kesehatan, mendorong setiap orang untuk mampu mengenali dan melakukan penanganan dini terhadap suatu penyakit. Berdasarkan pada kondisi tersebut maka implementasi teknologi informasi berupa sistem pakar diharapkan dapat membantu masyarakat luas untuk mengenali dan melakukan penanganan dini terhadap penyakit Pneumonia pada balita. Penelitian ini mengembangkan sistem pakar menggunakan Algoritme K-NN (K-Nearest Neighbor). Variabel yang digunakan yaitu batuk dengan nafas cepat, crackles (ronki) pada auskultasi, demam dan dengan penambahan gejala lainnya maka dapat dinyatakan Pneuomonia berat, yaitu kepala terangguk-angguk, pernafasan cuping hidung, tampak didada tarikan lebih dalam, tidak menyusu atau makan dan minum atau memuntahkan semuanya, anak tampak biru atau sianosis. Hasil diagnosa sistem menunjukan bahwa nilai similarity tertinggi pada No MR 9878 yaitu sebesar 81%, maka kasus baru didiagnosis Pneumonia Berat. Kata kunci: sistem pakar, pneumonia, balita, algoritme k-nearest neighbor
Diarrhea is one of the main causes of death in children under the age of 5 years. Based on reports from the World Health Organization (WHO), 1 in 10 children died of diarrhea with 800,000 deaths per child. When toddlers suffer from diarrhea there are obstacles faced by parents when having to consult a pediatrician, for that we need a system that can store the expertise of an expert in this case a pediatrician in dealing with diarrheal diseases that occur in infants. The K-NN (K-Nearest Neighbor) algorithm was developed in this research expert system. The variables used were 14 symptoms where diarrheal diseases were classified into 6 types. The results of distance calculation show testing data (new cases) No RM 4247 approaching 3 training data (old cases) with a distance value of 2.24. The addition of the calculation of similarity in the calculation strengthens the results of the diagnosis, with the largest similarity value of 79% at No RM 1090, then the testing data (new cases) didignosis mild acute dehydration diarrhea.
The incidence of breast cancer is 40 per 100.000 women. BSE is a screening to detect breast cancer. The research objective is to determine the correlation between knowledge and self-efficacy with BSE behavior. This cross-sectional descriptive-analytic study utilized a sample of 20-65 women aged 100 years. Multistage random sampling was used as the sampling technique—univariate and bivariate analysis with a significance level of ρ 0.05 and CI of 95%. The analysis results showed a correlation between the level of knowledge and self-efficacy with BSE behavior (p-value = 0.026; 0.021) and PR values of 2.5 and 2.6 (CI 95%: 1.074-5.641; 1.100- 6.293). In conclusion, women who have a high level of knowledge and self-efficacy are three times more likely to do BSE compared to women with low levels of knowledge and self-efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.