Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacterial outgrowth adjacent to orthodontic brackets. The aim was to evaluate the efficiency of orthodontic cement containing QPEI nanoparticles in reducing S. mutans and Lactobacillus casei outgrowth adjacent to orthodontic brackets. Orthodontic brackets were bonded to the buccal surfaces of extracted lower incisors. The antibacterial effect on S. mutans and L. casei outgrowth of Neobond bracket adhesive orthodontic cement with and without QPEI nanoparticles was compared. The antibacterial effect was evaluated using crystal violet staining and bacterial count (CFU/mL). The teeth in the experimental group, with the QPEI nanoparticles cement, showed significantly lower optical density (OD) values and CFU counts of S. mutans and L. casei than the teeth in the control group (p < 0.05). Based on the results, it can be concluded that orthodontic cement containing QPEI nanoparticles significantly inhibits S. mutans and L. casei growth around orthodontic brackets.
No abstract
The long-term success of dental implant rehabilitation depends significantly on proper peri-implant soft tissue integration. Therefore, decontamination of abutments prior to their connection to the implant is beneficial to enhance soft tissue attachment and to aid in maintaining marginal bone around the implant. Consequently, different implant abutment decontamination protocols were evaluated regarding biocompatibility, surface morphology, and bacterial load. The protocols evaluated were autoclave sterilization, ultrasonic washing, steam cleaning, chlorhexidine chemical decontamination, and sodium hypochlorite chemical decontamination. The control groups included: (1) implant abutments prepared and polished in a dental lab without decontamination and (2) unprepared implant abutments obtained directly from the company. Surface analysis was performed using scanning electron microscopy (SEM). Biocompatibility was evaluated using XTT cell viability and proliferation assays. Biofilm biomass and viable counts (CFU/mL) (n = 5 for each test) were used for surface bacterial load evaluation. Surface analysis revealed areas of debris and accumulation of materials, such as iron, cobalt, chromium, and other metals, in all abutments prepared by the lab and with all decontamination protocols. Steam cleaning was the most efficient method for reducing contamination. Chlorhexidine and sodium hypochlorite left residual materials on the abutments. XTT results showed that the chlorhexidine group (M = 0.7005, SD = 0.2995) had the lowest values (p < 0.001) (autoclave: M = 3.6354, SD = 0.1510; ultrasonic: M = 3.4077, SD = 0.3730; steam: M = 3.2903, SD = 0.2172; NaOCl: M = 3.5377, SD = 0.0927; prep non-decont.: M = 3.4815, SD = 0.2326; factory: M = 3.6173, SD = 0.0392). Bacterial growth (CFU/mL) was high in the abutments treated with steam cleaning and ultrasonic bath: 2.93 × 109, SD = 1.68 × 1012 and 1.83 × 109, SD = 3.95 × 1010, respectively. Abutments treated with chlorhexidine showed higher toxicity to cells, while all other samples showed similar effects to the control. In conclusion, steam cleaning seemed to be the most efficient method for reducing debris and metallic contamination. Bacterial load can be reduced using autoclaving, chlorhexidine, and NaOCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.