Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins--spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 microm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel beta-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.
Parameters of heat denaturation and intrinsic fluorescence of barnase and its close homologue, binase in the pH region 2-6 have been determined. The barnase heat denaturation (pH 2.8-5.5) proceeds according to the "all-or-none" principle. Barnase denaturation temperature is lower than that of binase and this difference increases from 2.5 degrees C at pH 5 to 7 degrees C at pH 3. Enthalpy values of barnase and binase denaturation coincide only at pH 4.5-5.5, but as far as pH decreases the barnase denaturation enthalpy decreases significantly and in this respect it differs from binase. The fluorescence and CD techniques do not reveal any distinctions in the local environment of aromatic residues in the two proteins, and the obtained difference in the parameters of intrinsic fluorescence is due to fluorescence quenching of the barnase Trp94 by the His 18 residue, absent in binase. Secondary structures of both native and denaturated proteins also do not differ. Some differences in the barnase and binase electrostatic characteristics, revealed in the character of the dipole moments distribution, have been found.
SynopsisA number of polytripeptides related to collagen, namely, (Gly-Pro-Pro),, (Gly-Pro-Hyp),, (Gly-Hyp-Hyp),, (Gly-Pro-Ala),, (Gly-Pro-Leu),, (Gly-Pro-Gly),, (Gly-Ala-Pro),, (GlyAla-Hyp),, (Ala-Pro-Pro),, and (Ala-Hyp-Hyp), were investigated by the methods of ir spectroscopy and hydrogen-deuterium kinetics. Strength and order of interpeptide hydrogen bonds of the polytripeptides in a triple-helical conformation were found to depend on the amino acid composition and residue sequence in the triplets. Correlation of x-ray diffraction and spectroscopic data for (Gly-Pro-Hyp), showed that the increase of the helix parameter in the process of dehydration is accompanied with the weakening of interpeptide hydrogen bonds. Influence of bound water on the length and order of interchain hydrogen bonding was also examined. It was shown that the incorporation of water molecules into the triple helix depends on the amino acid composition and residue sequence. Synthetic models and native collagens were compared.
We calculated interchain contacts on the atomic level for nonredundant set of 4602 protein-protein interfaces using an unbiased Voronoi-Delaune tessellation method, and made 20x20 residue contact matrixes both for homodimers and heterocomplexes. The area of contacts and the distance distribution for these contacts were calculated on both the residue and the atomic levels. We analyzed residue area distribution and showed the existence of two types of interresidue contacts: stochastic and specific. We also derived formulas describing the distribution of contact area for stochastic and specific interactions in parametric form. Maximum pairing preference index was found for Cys-Cys contacts and for oppositely charged interactions. A significant difference in residue contacts was observed between homodimers and heterocomplexes. Interfaces in homodimers were enriched with contacts between residues of the same type due to the effects of structure symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.