Hollow anode argon glow discharge plasma has been investigated experimentally at different argon gas pressure from constant discharge current. A sufficient high voltage has been applied among the electrodes to obtain breakdown. Firstly, we studied the influence of hollow anode diameter on the breakdown voltage and Paschens law. The inner diameters of hollow anodes used in our work were (10, 15, 20, 25, 30, 35, and 40) mm. Secondly under the same conditions we extended our study to measure some plasma parameters in the negative glow region using direct current argon glow discharge. The temperature and density of electrons in the negative glow were measured using double probes. From the (Ip-Vp) characteristics of double probes, we obtained plasma parameters by using computer MATLAB program. The results showed that the measured Pashence's curve closes to the well-known theoretical Pashence's law. The breakdown voltage and its minimum value decreased with increasing the hollow anode diameter. The Paschen's curve became wide and shifted to lower pressure with increasing the diameter. The reduction area of hollow anode caused dens and luminous intensity of plasma to occur in the negative glow region. Increasing the diameter resulted in decreasing the temperature and density of electron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.