Hollow anode argon glow discharge plasma has been investigated experimentally at different argon gas pressure from constant discharge current. A sufficient high voltage has been applied among the electrodes to obtain breakdown. Firstly, we studied the influence of hollow anode diameter on the breakdown voltage and Paschens law. The inner diameters of hollow anodes used in our work were (10, 15, 20, 25, 30, 35, and 40) mm. Secondly under the same conditions we extended our study to measure some plasma parameters in the negative glow region using direct current argon glow discharge. The temperature and density of electrons in the negative glow were measured using double probes. From the (Ip-Vp) characteristics of double probes, we obtained plasma parameters by using computer MATLAB program. The results showed that the measured Pashence's curve closes to the well-known theoretical Pashence's law. The breakdown voltage and its minimum value decreased with increasing the hollow anode diameter. The Paschen's curve became wide and shifted to lower pressure with increasing the diameter. The reduction area of hollow anode caused dens and luminous intensity of plasma to occur in the negative glow region. Increasing the diameter resulted in decreasing the temperature and density of electron.
This paper investigates the characteristics some of argon plasma parameters of glow discharge under axial magnetic field. The DC power supply of range (0-6000) V is used as a breakdown voltage to obtain the discharge of argon gas. The discharge voltagecurrent (V-I) characteristic curves and Paschen's curves as well as the electrical conductivity were studied with the presents of magnetic field confinement at different gas pressures. The magnetic field up to 25 mT was obtained using four coils of radius 6 cm and 320 turn by passing A.C current up to 5 Amperes. Spectroscopic measurements are employed for purpose of estimating two main plasma parameters electron temperature (Te) and electron density (ne). Emission spectra from positive column (PC) zone of the discharge have been studies at different values of magnetic field and pressures at constant discharge currents of 1.5 mA. Electron temperature (Te) and its density are calculated from the ratio of the intensity of two emission lines of the same lower energy levels. Experimental results show the abnormal glow region characteristics (positive resistance). Breakdown voltage versus pressure curves near the curves of paschen and decrease as magnetic field increases due to magnetic field confinement of plasma charged particles. Also the electrical conductivity increases due to enhancing magnetic field at different gas pressures. Both temperature density of electron and the intensities of two selected emission lines decrease with increasing pressure due decreasing of mean free path of electron. Electron density increase according to enhancing magnetic field, while the intensity of emitting lines tends to decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.