We investigated the molecular events involved in the long-lasting reduction of adipose mass by the selective CB1 antagonist, SR141716. Its effects were assessed at the transcriptional level both in white (WAT) and brown (BAT) adipose tissues in a diet-induced obesity model in mice. Our data clearly indicated that SR141716 reversed the phenotype of obese adipocytes at both macroscopic and genomic levels. First, oral treatment with SR141716 at 10 mg/kg/d for 40 days induced a robust reduction of obesity, as shown by the 50% decrease in adipose mass together with a major restoration of white adipocyte morphology similar to lean animals. Second, we found that the major alterations in gene expression levels induced by obesity in WAT and BAT were mostly reversed in SR141716-treated obese mice. Importantly, the transcriptional patterns of treated obese mice were similar to those obtained in the CB1 receptor knockout mice fed a high-fat regimen and which are resistant to obesity, supporting a CB1 receptor-mediated process. Functional analysis of these modulations indicated that the reduction of adipose mass by the molecule resulted from an enhanced lipolysis through the induction of enzymes of the beta-oxidation and TCA cycle, increased energy expenditure, mainly through futile cycling (calcium and substrate), and a tight regulation of glucose homeostasis. These changes accompanied a significant cellular remodeling and contributed to a reduction of the obesity-related inflammatory status. In addition to a transient reduction of food consumption, increases of both fatty acid oxidation and energy expenditure induced by the molecule summate leading to a sustained weight loss. Altogether, these data strongly indicate that the endocannabinoid system has a major role in the regulation of energy metabolism.
DCE-US allowed quantitative in vivo evaluation of the functional effects of AVE8062, which was found most effective on tumoral microvasculature 6 hours after its administration. A clinical phase-1 study of AVE8062 is ongoing using the same ultrasonography methodology before and 6 and 24 hours postadministration.
Exhaustive analysis of the location of the peripheral benzodiazepine receptor (PBR) both at the subcellular and the tissue level is warranted to gain a better understanding of its biological roles. To date, many studies have been performed in animal models, such as rat, mouse, and pig, that yielded important information. However, only a few reports were dedicated to the analysis of PBR expression in humans. To enlarge on previous studies, we investigated PBR expression in different human organs using the monoclonal antibody 8D7 that specifically recognized the human PBR. First, we performed electron microscopic analysis that for the first time unambiguously demonstrated the localization of the PBR on the outer mitochondrial membrane. Second, focusing our analysis on human tissues for which information on PBR expression is sparse (lung, stomach, small intestine, colon, thyroid, adrenal gland, pancreas, breast, prostate, ovary), we found that PBR exhibits selective localization. This characterization of PBR localization in human tissues should provide important insights for the understanding of PBR functions.
Using a cytoplasmic domain of the peripheral benzodiazepine receptor (PBR) as a bait in the yeast twohybrid system, we have isolated a cDNA encoding a new protein that specifically interacts with PBR. We named it PRAX-1, for peripheral benzodiazepine receptor-associated protein 1. PRAX-1 is a 1857-amino acid protein, the sequence of which was structurally unrelated to any known proteins. The gene encoding PRAX-1 is located in the q22-q23 region of the long arm of the human chromosome 17. The PRAX-1 mRNA is 7.5 kilobase pairs, predominantly expressed in the central nervous system, pituitary gland, and thymus. At the protein level, we found the PRAX-1 as a single 220 -250-kDa protein in the brain and in many different human cell lines tested using specific antibody raised against PRAX-1. Parallel analysis of the PRAX-1 mRNA and protein expression performed in mouse and rat gave similar results. Immunocytochemistry analysis carried out to define the distribution of the PRAX-1 protein in the rat brain showed that PRAX-1 was prevalent in the mesolimbic system, specially abundant in the CA1 subfield of the hippocampus. Exhibiting several domains involved in proteinprotein interaction (three proline-rich domains, three leucine-zipper motifs, and an Src homology region 3-like domain), the PRAX-1 may be looked upon as a new adaptator protein. We show that both the Src homology region 3-like domain and a proline-rich domain in PRAX-1 are required for the interaction with PBR. PRAX-1 is a cytoplasmic protein that also partially colocalizes with PBR in the mitochondria, as determined by confocal microscopy and Western blotting. Altogether our observations support a model of interaction implicating PBR and this newly described protein, PRAX-1. As being the first cytoplasmic protein associated with PBR, PRAX-1 is a new tool that opens new fields for exploring PBR biological roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.