N -layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N -layer 2H-molybdenum ditelluride (MoTe2). We observe a series of N -dependent low-frequency interlayer shear and breathing modes (below 40 cm −1 , denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100 − 200 cm −1 , denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200 − 300 cm −1 , denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N -layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals.Keywords: Two-dimensional materials, layered crystals, transition metal dichalcogenides, MoTe2, Raman spectroscopy, interlayer breathing and shear modes, force constants, Davydov splitting, surface effects.Introduction In the wake of graphene, a vast family of layered materials is attracting tremendous attention [1]. Now available in the form of N -layer crystals, the latter exhibit peculiar physical properties that complement the assets of graphene and offer exciting perspectives to design van der Waals heterostructures [1]. Semiconducting transition metal dichalcogenides (MX 2 , with M = Mo, W and X = S, Se, Te) are among the most actively investigated layered crystals [2]. Indeed, although bulk MX 2 exhibit indirect bandgaps, monolayer MX 2 are direct bandgap semiconductors [3,4] with remarkable spin, valley [5] and optoelectronic properties [6]. More Generally, N -layer MX 2 crystals provide an ideal platform to uncover the impact of symmetry breaking and interlayer interactions on the electronic, optical and vibrational properties, from the bulk (three-dimensional) to the monolayer (quasi two-dimensional) limit.In particular, in N -layer MX 2 , interlayer interactions result in a splitting of all the monolayer phonon modes [7][8][9][10][11][12][13][14][15][16] (see Table I). The latter effect is known as the Davydov splitting [17] and is closely related to the force constants that govern the vibrational properties of MX 2 [9]. The Davydov splitting has been previously studied in polyaromatic molecules [18], thin films [19], and bulk layered crystals, ...
We investigate the interlayer phonon modes in N-layer rhenium diselenide (ReSe2) and rhenium disulfide (ReS2) by means of ultralow-frequency micro-Raman spectroscopy. These transition metal dichalcogenides exhibit a stable distorted octahedral (1T') phase with significant in-plane anisotropy, leading to sizable splitting of the (in-plane) layer shear modes. The fan-diagrams associated with the measured frequencies of the interlayer shear modes and the (out-of-plane) interlayer breathing modes are perfectly described by a finite linear chain model and allow the determination of the interlayer force constants. Nearly identical values are found for ReSe2 and ReS2. The latter are appreciably smaller than but on the same order of magnitude as the interlayer force constants reported in graphite and in trigonal prismatic (2Hc) transition metal dichalcogenides (such as MoS2, MoSe2, MoTe2, WS2, WSe2), demonstrating the importance of van der Waals interactions in N-layer ReSe2 and ReS2. In-plane anisotropy results in a complex angular dependence of the intensity of all Raman modes, which can be empirically utilized to determine the crystal orientation. However, we also demonstrate that the angular dependence of the Raman response drastically depends on the incoming photon energy, shedding light on the importance of resonant exciton-phonon coupling in ReSe2 and ReS2.
Van der Waals heterostuctures, made from stacks of two-dimensional materials, exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal (graphene)/semiconductor (transition metal dichalcogenide (TMD, here MoSe2)) heterostructures using a combination of micro-photoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene/MoSe2 is quenched by more than two orders of magnitude and rises linearly with the photon flux, demonstrating a drastically shortened (∼ 1 ps) room temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2. Remarkably, the steady state Fermi energy of graphene saturates at 290±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe2. This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the dominant interlayer coupling mechanism between atomically-thin TMDs and graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.