A series of 1 g shaking table model pile tests were carried out in dry and saturated dense sand to evaluate dynamic p-y curves for various conditions of the acceleration frequency, the acceleration amplitude of input loads, the flexural stiffness of the pile shaft and the mass at the pile head. The influence of each parameter on dynamic p-y curves was evaluated. Dynamic p-y backbone curves for pseudo static analysis of dense sand were proposed as hyperbolic functions by connecting the peak points of the experimental p-y curves, which correspond maximum soil resistances. In order to express the backbone curves as hyperbolic functions, empirical equations for the initial soil stiffness (k ini ) and the ultimate soil resistance (p u ) were developed, respectively, as a function of the soil friction angle and the confining stress. The herein suggested backbone curves were also compared with the currently available p-y curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.