Nuclear imaging in conjunction with radioactive tracers enables noninvasive measurements of biochemical events in vivo. However, access to tracers remains limited due to the lack of methods for rapid assembly of radiolabeled molecules with the prerequisite biological activity. Herein, we report a one-pot, three-component, copper(II)-mediated reaction of azides, alkynes, and [(125)I]iodide to yield 5-[(125)I]iodo-1,2,3-triazoles. Using a selection of azides and alkynes in a combinatorial approach, we have synthesized a library of structurally diverse (125)I-labeled triazoles functionalized with bioconjugation groups, fluorescent dyes, and biomolecules. Our preliminary biological evaluation suggests that 5-[(125)I]iodo-1,2,3-triazoles are resistant to deiodination in vivo, both as small molecular probes and as antibody conjugates. The ability to incorporate radioactive iodide into triazoles directly from the parent azides and alkynes makes the method broadly applicable and offers the potential to rapidly assemble molecular probes from an array of structurally diverse, and readily available, building blocks.
A novel anticancer vaccine candidate built on a nonpeptidic scaffold has been synthesized. Four S-Tn tumor-associated glycomimetic antigens have been clustered onto a calix[4]arene scaffold bearing an immunoadjuvant moiety (P3CS). The immunogenicity of the synthetic construct has been investigated by immunization of mice in vivo. ELISA assay has evidenced that the tetravalent construct stimulates a higher production of anti-Tn antigen IgG antibodies when compared to an analogous monovalent compound. This result is ascribable to an antigen cluster effect and makes the reported vaccine candidate a good mimic of the natural motifs present on the mucine surface.
MUC1 protein overexpressed in human epithelial carcinoma is a target in development of novel anticancer vaccines. Multiple units of immunodominant B-cell epitope PDTRP MUC1 core sequence were conjugated to calix[4,8]arene platforms containing TLR2 ligand, to produce two novel anticancer self-adjuvant vaccine candidates. The immunogenicity of the synthetic constructs was investigated by immunization of mice in vivo. ELISA assay evidenced that the vaccine candidates stimulate anti MUC1 IgG antibody production (major for the octavalent construct) and no additive effect but a multivalency effect was observed when compared to an analogous monovalent. Octa- and tetravalent constructs lacking in PDTRP peptide moieties did not show anti MUC1 IgG antibody production in mice. The antibodies induced by the synthesized constructs are able to recognize the MUC1 structures present on MCF7 tumor cells. The results display that calixarenes are convenient platforms for building multicomponent self-adjuvant vaccine constructs promising as immunotherapeutic anticancer agents.
A novel selectively targeting gene delivery approach has been developed for advanced hepatocellular carcinoma (HCC), a leading cause of cancer mortality whose prognosis remains poor. We combine the strong liver tropism of serotype-8 capsid-pseudotyped adeno-associated viral vectors (AAV8) with a liver-specific promoter (HLP) and microRNA-122a (miR-122a)-mediated posttranscriptional regulation. Systemic administration of our AAV8 construct resulted in preferential transduction of the liver and encouragingly of HCC at heterotopic sites, a finding that could be exploited to target disseminated disease. Tumor selectivity was enhanced by inclusion of miR-122a-binding sequences (ssAAV8-HLP-TK-122aT4) in the expression cassette, resulting in abrogation of transgene expression in normal murine liver but not in HCC. Systemic administration of our tumor-selective vector encoding herpes simplex virus-thymidine kinase (TK) suicide gene resulted in a sevenfold reduction in HCC growth in a syngeneic murine model without toxicity. In summary, we have developed a systemically deliverable gene transfer approach that enables high-level expression of therapeutic genes in HCC but not normal tissues, thus improving the prospects of safe and effective treatment for advanced HCC.
2-[18F]Fluoroethyl azide ([18F]FEA) can readily be obtained by nucleophilic substitution of 2-azidoethyl-4-toluenesulfonate with [18F]fluoride (half-life 110 min), and has become widely used as a reagent for ‘click’ labeling of PET tracers. However, distillation of [18F]FEA is typically required, which is time-consuming and unpractical for routine applications. In addition, copper(I)-catalyzed cycloaddition of [18F]FEA with non-activated alkynes, and with substrates containing labile functional groups, can be challenging. Herein, we report a highly efficient and practical ligand-accelerated one-pot/two-step method for ‘click’ labeling of small molecule tracers with [18F]FEA. The method exploits the ability of the copper(I) ligand bathophenanthrolinedisulfonate to accelerate the rate of the cycloaddition reaction. As a result, alkynes can be added directly to the crude reaction mixture containing [18F]FEA, and as cyclisation occurs almost immediately at room temperature, the reaction is tolerant to labile functional groups. The method was demonstrated by reacting [18F]FEA with a series of alkyne-functionalized 6-halopurines to give the corresponding triazoles in 55–76% analytical radiochemical yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.