Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons.
The clinical course of COVID-19 is very heterogeneous: Most infected individuals can be managed in an outpatient setting, but a substantial proportion of patients requires intensive care, resulting in a high rate of fatalities. Recently, an association between contact to small children and mild course of COVID-19 was reported. We performed an observational study to assess the impact of previous infections with seasonal coronaviruses on COVID-19 severity. 60 patients with confirmed COVID-19 infections were included (age 30 - 82 years; 52 males, 8 females): 19 inpatients with critical disease, 16 inpatients with severe or moderate disease and 25 outpatients (age and gender matched to inpatients). Patients with critical disease had significantly lower levels of HCoV OC43- (p=0.016) and HCoV HKU1-specific (p=0.023) antibodies at the first encounter compared to other COVID-19 patients. Our results indicate that previous infections with seasonal coronaviruses might protect against a severe course of disease. This finding should be validated in other settings and could contribute to identify persons at risk before an infection.
The clinical course of COVID-19 is very heterogeneous: Most infected individuals can be managed in an outpatient setting, but a substantial proportion of patients requires intensive care, resulting in a high rate of fatalities. We performed a biomarker study to assess the impact of prior infections with seasonal coronaviruses on COVID-19 severity. 60 patients with confirmed COVID-19 infections were included (age 30 - 82 years; 52 males, 8 females): 19 inpatients with critical disease, 16 inpatients with severe or moderate disease and 25 outpatients. Patients with critical disease had significantly lower levels of anti-HCoV OC43-NP (p = 0.016) and HCoV HKU1-NP (p = 0.023) antibodies at the first encounter compared to other COVID-19 patients. Our results indicate that prior infections with seasonal coronaviruses might protect against a severe course of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.