Background Hereditary transthyretin (ATTRv) amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We aimed to assess the efficacy and safety of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with ATTRv amyloidosis with polyneuropathy.
MethodsThis multi-country, multi-centre, open-label extension (OLE) trial enrolled patients at 43 sites in 19 countries as of 24 September 2018. Patients were eligible if they had completed the phase 3 APOLLO (randomised, double-blind, placebo-controlled [2:1], 18-month study) or phase 2 OLE (single-arm, 24-month study) parent studies and tolerated the study drug. Eligible patients from APOLLO (APOLLO-patisiran [received patisiran during APOLLO] and APOLLO-placebo [received placebo during APOLLO] groups) and the phase 2 OLE (phase 2 OLE patisiran group) studies enrolled in this Global OLE trial and receive patisiran 0•3 mg/kg by intravenous infusion every 3 weeks for up to 5 years. Efficacy assessments include measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress. Patients included in the current efficacy analyses are those who had completed 12-month efficacy assessments as of the data cut-off. Safety analyses included all patients who received ≥1 dose of patisiran up to the data cut-off. The Global OLE is ongoing with no new enrolment, and current findings are based on the 12-month interim analysis. The study is registered with ClinicalTrials.gov, NCT02510261.
Bacteria organized in biofilms are a common cause of relapsing or persistent infections, and the ultimate cause of implant-associated osteomyelitis. In these patients, biofilms of staphylococci are prevalent. Bacteria organized as biofilms are relatively resistant towards antibiotics and biocides, and it is also assumed that they may escape host defense mechanisms. In this context, we have studied how polymorphonuclear neutrophils (PMN), the "first line of defense" against bacterial infection, interact with biofilms generated in vitro. We found that PMN recognize biofilms and activate defense-associated reactions, including phagocytosis, degranulation of lactoferrin and elastase, and DNA release as well. Destruction of biofilms ensues, showing that biofilms are not inherently protected against the attack by phagocytic cells.
Bacteria, organized in biofilms, are a common cause of relapsing or persistent infections and the ultimate cause of implant-associated osteomyelitis. Bacterial biofilms initiate a prominent local inflammatory response with infiltration of polymorphonuclear neutrophils (PMN), the main protagonists of the local innate host defense against bacteria. In our previous work we found that PMN recognize and adhere to biofilms, and that phagocytosis and degranulation of bactericidal substances, such as lactoferrin, were initiated. In contrast to the situation with planktonic bacteria, opsonization of biofilms with immunoglobulin and complement was not required for PMN activation, suggesting that biofilms contain signaling components for PMN. In the present study we identified in the bacteria-free extracellular substance of Staphylococcus epidermidis biofilms protein fractions that activated PMN in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.