Changes in gene body methylation predict phenotypic acclimatization of the coral Stylophora pistillata to ocean acidification.
Over the last century, the anthropogenic production of CO2 has led to warmer (+0.74 °C) and more acidic (-0.1 pH) oceans1, resulting in increasingly frequent and severe mass bleaching events worldwide that precipitate global coral reef decline2,3. To mitigate this decline, proposals to augment the stress tolerance of corals through genetic and non-genetic means have been gaining traction4. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization5,6. While DNA methylation has been observed in corals7-10, its potential role in phenotypic plasticity has not yet been described. Here, we show that, similar to findings in mice11, DNA methylation significantly reduces spurious transcription in the Red Sea coral Stylophora pistillata, suggesting the evolutionary conservation of this essential mechanism in corals. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the maintenance of linear extension rates under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization, providing corals with an additional mechanism to cope with climate change.
In recent years it became clear that in eukaryotic genome evolution gene loss is prevalent over gene gain. However, the absence of genes in an annotated genome is not always equivalent to the loss of genes. Due to sequencing issues, or incorrect gene prediction, genes can be falsely inferred as absent. This implies that loss estimates are overestimated and, more generally, that falsely inferred absences impact genomic comparative studies. However, reliable estimates of how prevalent this issue is are lacking. Here we quantified the impact of gene prediction on gene loss estimates in eukaryotes by analysing 209 phylogenetically diverse eukaryotic organisms and comparing their predicted proteomes to that of their respective six-frame translated genomes. We observe that 4.61% of domains per species were falsely inferred to be absent for Pfam domains predicted to have been present in the last eukaryotic common ancestor. Between phylogenetically different categories this estimate varies substantially: for clade-specific loss (ancestral loss) we found 1.30% and for species-specific loss 16.88% to be falsely inferred as absent. For BUSCO 1-to-1 orthologous families, 18.30% were falsely inferred to be absent. Finally, we showed that falsely inferred absences indeed impact loss estimates, with the number of losses decreasing by 11.78%. Our work strengthens the increasing number of studies showing that gene loss is an important factor in eukaryotic genome evolution. However, while we demonstrate that on average inferring gene absences from predicted proteomes is reliable, caution is warranted when inferring species-specific absences.
Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor’s gene content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained orthologous groups differ vastly from one another. Availability and implementation The data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.