The demonstration that Nanocrystalline Diamond (NCD) can retain the superior Young's modulus (1,100 GPa) of single crystal diamond twinned with its ability to be grown at low temperatures (<450 {\deg}C) has driven a revival into the growth and applications of NCD thin films. However, owing to the competitive growth of crystals the resulting film has a roughness that evolves with film thickness, preventing NCD films from reaching their full potential in devices where a smooth film is required. To reduce this roughness, films have been polished using Chemical Mechanical Polishing (CMP). A Logitech Tribo CMP tool equipped with a polyurethane/polyester polishing cloth and an alkaline colloidal silica polishing fluid has been used to polish NCD films. The resulting films have been characterised with Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy. Root mean square roughness values have been reduced from 18.3 nm to 1.7 nm over 25 {\mu}m$^2$, with roughness values as low as 0.42 nm over ~ 0.25 {\mu}m$^2$. A polishing mechanism of wet oxidation of the surface, attachment of silica particles and subsequent shearing away of carbon has also been proposed.Comment: 6 pages, 6 figure
The growth of >100-μm-thick diamond layers adherent on aluminum nitride with low thermal boundary resistance between diamond and AlN is presented in this work. The thermal barrier resistance was found to be in the range of 16 m2·K/GW, which is a large improvement on the current state-of-the-art. While thick films failed to adhere on untreated AlN films, AlN films treated with hydrogen/nitrogen plasma retained the thick diamond layers. Clear differences in ζ-potential measurement confirm surface modification due to hydrogen/nitrogen plasma treatment. An increase in non-diamond carbon in the initial layers of diamond grown on pretreated AlN is seen by Raman spectroscopy. The presence of non-diamond carbon has minimal effect on the thermal barrier resistance. The surfaces studied with X-ray photoelectron spectroscopy revealed a clear distinction between pretreated and untreated samples. The surface aluminum goes from a nitrogen-rich environment to an oxygen-rich environment after pretreatment. A clean interface between diamond and AlN is seen by cross-sectional transmission electron microscopy.
Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug delivery vehicles, and contrast agents in vivo. In the quest for superior photostability and bio-compatibility, nanodiamonds (NDs) are considered one of the best choices due to their unique structural, chemical, mechanical, and optical properties. So far, mainly fluorescent NDs have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centers with stable optical properties. Here, we show that single non-fluorescing NDs exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and ND size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of NDs internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.
Broadband microwave complex permittivity measurements of nanodiamond powders are presented. Previous studies show that measurements of dielectric loss strongly correlate with the presence of nondiamond surface impurities. In this study, the frequency dependence of these losses is investigated using the microwave cavity perturbation (MCP) and broadband coaxial probe (BCP) methods. This allowed further understanding as to what mechanisms contribute to the microwave absorption (free electron conduction or dielectric loss from the disordered surfaces). A multimode MCP system is used which utilizes modes to provide partial spectral characterization. The MCP results revealed minimal frequency dependence, unlike any static conduction-related mechanism. The BCP measurements corroborate the MCP results with much higher spectral resolution, and further demonstrate that disorder related loss may dominate over free electron conduction from 1-10 GHz. From 0.1-1 GHz, free electron conduction has a greater influence with a characteristic dependence implying that conduction may dominate at lower frequencies. However, the BCP method, while repeatable, lacks in precision compared to the cavity method. Nonetheless, the major conclusion in this paper is that through simple microwave permittivity measurements, nondiamond carbon impurities in nanodiamond powders are measurable most likely because of disorder related losses as opposed to free electron conduction.
The measurement of ζ potential of Ga-face and N-face gallium nitride has been carried out as a function of pH. Both of the faces show negative ζ potential in the pH range 5.5–9. The Ga-face has an isoelectric point at pH 5.5. The N-face shows a more negative ζ potential due to larger concentration of adsorbed oxygen. The ζ potential data clearly showed that H-terminated diamond seed solution at pH 8 will be optimal for the self-assembly of a monolayer of diamond nanoparticles on the GaN surface. The subsequent growth of thin diamond films on GaN seeded with H-terminated diamond seeds produced fully coalesced films, confirming a seeding density in excess of 10 11 cm –2 . This technique removes the requirement for a low thermal conduction seeding layer like silicon nitride on GaN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.