The use of novel materials in the nano-scale size range for applications in devices, drugs and diagnostic agents comes with a number of new opportunities, and also serious challenges to human applications. The larger size of particulate-based agents, as compared to traditional drugs, allows for the significant advantages of multivalency and multi-functionality. However, the human use of nanomaterials requires a thorough understanding of the biocompatibility of the synthetic molecules and their complex pharmacology. Possible toxicities created by the unusual properties of the nanoparticles are neither well-understood, nor predictable yet. A key to the successful use of the burgeoning field of nanomaterials as diagnostic and therapeutic agents will be to appropriately match the biophysical features of the particle to the disease system to be evaluated or treated.
Background
Mutagenesis and labeling studies have identified amino acids from the human α1 glycine receptor (GlyR) extracellular, transmembrane (TM), and intracellular domains in mediating ethanol potentiation. However, limited high-resolution structural data for physiologically relevant receptors in this Cys-loop receptor superfamily have made pinpointing the critical amino acids difficult. Homologous ion channels from lower organisms provide conserved models for structural and functional properties of Cys-loop receptors. We previously demonstrated that a single amino acid variant of the Gloeobacter violaceus ligand-gated ion channel (GLIC) produced ethanol and anesthetic sensitivity similar to that of GlyRs and provided crystallographic evidence for ethanol binding to GLIC.
Methods
We directly compared ethanol modulation of the α1 GlyR and GLIC to a chimera containing the transmembrane domain from human α1 GlyRs and the ligand-binding domain of GLIC using two-electrode voltage clamp electrophysiology of receptors expressed in Xenopus laevis oocytes.
Results
Ethanol potentiated α1 GlyRs in a concentration-dependent manner in the presence of zinc-chelating agents, but did not potentiate GLIC at pharmacologically relevant concentrations. The GLIC/GlyR chimera recapitulated the ethanol potentiation of GlyRs, without apparent sensitivity to zinc chelation. For chimera expression in oocytes, it was essential to suppress leakage current by adding 50 μM picrotoxin to the media, a technique that may have applications in expression of other ion channels.
Conclusions
Our results are consistent with a transmembrane mechanism of ethanol modulation in Cys-loop receptors. This work highlights the relevance of bacterial homologs as valuable model systems for studying ion channel function of human receptors and demonstrates the modularity of these channels across species.
Extracellular vesicles (EV) are comprised of vesicles budding from cell membranes and smaller intracellular vesicles shed by cells. EV play a role in remodeling the tumor microenvironment (TME) and support tumor progression. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein with a carboxypeptidase function, frequently associated with poor clinical prognosis in prostate cancer (PCa). We previously identified an oncogenic PSMA signaling function in prostate cancer. Others demonstrated that EV isolated from the plasma of patients with high-grade PCa carry PSMA, but so far no pathophysiological effect has been associated with PSMA-bearing EV. Here we demonstrate that EV from PCa cells are able to transfer PSMA and its functionality to cells in the TME. The consequence of that EV-mediated PSMA transfer is an acute to long-term increased secretion of vascular endothelial growth factor-A (VEGF-A), angiogenin, pro-angiogenic and pro-lymphangiogenic mediators and increased 4E binding protein 1 (4EBP-1) phosphorylation in tumors. We compare EV from PCa cells with or without PSMA expression to address the role of PSMA-bearing EV in promoting pro-tumoral changes in the TME using classical molecular biology and novel molecular imaging approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.