BACKGROUND: New York City emerged as an epicenter of the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVE: To describe the clinical characteristics and risk factors associated with mortality in a large patient population in the USA. DESIGN: Retrospective cohort study. PARTICIPANTS: 6493 patients who had laboratoryconfirmed COVID-19 with clinical outcomes between March 13 and April 17, 2020, who were seen in one of the 8 hospitals and/or over 400 ambulatory practices in the New York City metropolitan area MAIN MEASURES: Clinical characteristics and risk factors associated with in-hospital mortality. KEY RESULTS: A total of 858 of 6493 (13.2%) patients in our total cohort died: 52/2785 (1.9%) ambulatory patients and 806/3708 (21.7%) hospitalized patients. Cox proportional hazard regression modeling showed an increased risk of in-hospital mortality associated with age older than 50 years (hazard ratio [HR] 2.34, CI 1.47-3.71), systolic blood pressure less than 90 mmHg (HR 1.38, CI 1.06-1.80), a respiratory rate greater than 24 per min (HR 1.43, CI 1.13-1.83), peripheral oxygen saturation less than 92% (HR 2.12, CI 1.56-2.88), estimated glomerular filtration rate less than 60 mL/min/1.73m 2 (HR 1.80, CI 1.60-2.02), IL-6 greater than 100 pg/mL (HR 1.50, CI 1.12-2.03), D-dimer greater than 2 mcg/mL (HR 1.19, CI 1.02-1.39), and troponin greater than 0.03 ng/mL (HR 1.40, CI 1.23-1.62). Decreased risk of in-hospital mortality was associated with female sex (HR 0.84, CI 0.77-0.90), African American race (HR 0.78 CI 0.65-0.95), and hydroxychloroquine use (HR 0.53, CI 0.41-0.67). CONCLUSIONS: Among patients with COVID-19, older age, male sex, hypotension, tachypnea, hypoxia, impaired renal function, elevated D-dimer, and elevated troponin were associated with increased in-hospital mortality and hydroxychloroquine use was associated with decreased in-hospital mortality.
Purpose: ROS1 tyrosine kinase inhibitors (TKI) provide significant benefit in lung adenocarcinoma patients with ROS1 fusions. However, as observed with all targeted therapies, resistance arises. Detecting mechanisms of acquired resistance (AR) is crucial to finding novel therapies and improve patient outcomes.Experimental Design: ROS1 fusions were expressed in HBEC and NIH-3T3 cells either by cDNA overexpression (CD74/ROS1, SLC34A2/ROS1) or CRISPR-Cas9-mediated genomic engineering (EZR/ROS1). We reviewed targeted large-panel sequencing data (using the MSK-IMPACT assay) patients treated with ROS1 TKIs, and genetic alterations hypothesized to confer AR were modeled in these cell lines.Results: Eight of the 75 patients with a ROS1 fusion had a concurrent MAPK pathway alteration and this correlated with shorter overall survival. In addition, the induction of ROS1 fusions stimulated activation of MEK/ERK signaling with minimal effects on AKT signaling, suggesting the importance of the MAPK pathway in driving ROS1 fusion-positive cancers. Of 8 patients, 2 patients harbored novel in-frame deletions in MEK1 (MEK1delE41_L54) and MEKK1 (MEKK1delH907_C916) that were acquired after ROS1 TKIs, and 2 patients harbored NF1 loss-of-function mutations. Expression of MEK1del or MEKK1del, and knockdown of NF1 in ROS1 fusionpositive cells activated MEK/ERK signaling and conferred resistance to ROS1 TKIs. Combined targeting of ROS1 and MEK inhibited growth of cells expressing both ROS1 fusion and MEK1del.Conclusions: We demonstrate that downstream activation of the MAPK pathway can mediate of innate acquired resistance to ROS1 TKIs and that patients harboring ROS1 fusion and concurrent downstream MAPK pathway alterations have worse survival. Our findings suggest a treatment strategy to target both aberrations.
Aim Deterioration of patients from COVID-19 is associated with cytokine release syndrome attributed to an elevation in pro-inflammatory cytokines. Vitamin D reduces proinflammatory cytokines, and has the possibility of reducing complications from respiratory tract illnesses. Method This was a retrospective, observational, cohort study of patients with COVID-19 disease within a New York City Health System. Adult patients were included if they tested positive for SARS-CoV-2, and had a serum 25-hydroxy vitamin D level (25(OH)D) within the three previous months prior to their detected SARS-CoV-2 test. Patients were compared and evaluated based upon their 25(OH)D levels. The primary endpoints were hospitalization, need for oxygen support, and 90-day mortality. Results 437 COVID-19 patients were included [67 (IQR: 56–79) years] within this cohort. Deficient plasma 25(OH)D levels (<20 ng/ml) were associated with an increased likelihood of oxygen support [OR:2.23 (95% CI: 1.46–3.44, p = 0.0002)] from COVID-19. Deficient plasma 25(OH)D levels were not independently associated with 90-day mortality or risk of hospitalization. Hospitalization rates (98%), oxygen support (93%), and mortality rates (49%) were highest in patients who had 25(OH)D levels less than 10 ng/ml when compared to other 25(OH)D levels. Conclusion Serum 25-hydroxy vitamin D levels may affect the need for oxygen support therapy in patients with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.