Inter-individual variability has been a major hurdle to optimize disease management. Precision medicine holds promise for improving health and healthcare via tailor-made therapeutic strategies. Herein, we outline the paradigm of “pharmacometabolomics-aided pharmacogenomics” in autoimmune diseases. We envisage merging pharmacometabolomic and pharmacogenomic data (to address the interplay of genomic and environmental influences) with information technologies to facilitate data analysis as well as sense- and decision-making on the basis of synergy between artificial and human intelligence. Humans can detect patterns, which computer algorithms may fail to do so, whereas data-intensive and cognitively complex settings and processes limit human ability. We propose that better-informed, rapid and cost-effective omics studies need the implementation of holistic and multidisciplinary approaches.
Wound healing constitutes an essential process for all organisms and involves a sequence of three phases. The disruption or elongation of any of these phases can lead to a chronic or non-healing wound. Electrical stimulation accelerates wound healing by mimicking the current that is generated in the skin after any injury. Here, we sought to identify the molecular mechanisms involved in the healing process following in vitro microcurrent stimulation—a type of electrotherapy. Our results concluded that microcurrents promote cell proliferation and migration in an ERK 1/2- or p38-dependent way. Furthermore, microcurrents induce the secretion of transforming growth factor-beta-1 (TGF-β1) in fibroblasts and osteoblast-like cells. Interestingly, transcriptomic analysis uncovered that microcurrents enhance the transcriptional activation of genes implicated in Hedgehog, TGF-β1 and MAPK signaling pathways. Overall, our results demonstrate that microcurrents may enhance wound closure through a combination of signal transductions, via MAPK’s phosphorylation, and the transcriptional activation of specific genes involved in the healing process. These mechanisms should be further examined in vivo, in order to verify the beneficial effects of microcurrents in wound or fracture healing.
A population-based cross-sectional study was conducted during the first COVID-19 wave, to examine the impact of COVID-19 on mental health using an anonymous online survey, enrolling 9565 individuals in 78 countries. The current sub-study examined the impact of the pandemic and the associated lockdown measures on the mental health, and protective behaviors of cancer patients in comparison to non-cancer participants. Furthermore, 264 participants from 30 different countries reported being cancer patients. The median age was 51.5 years, 79.9% were female, and 28% had breast cancer. Cancer participants reported higher self-efficacy to follow recommended national guidelines regarding COVID-19 protective behaviors compared to non-cancer participants (p < 0.01). They were less stressed (p < 0.01), more psychologically flexible (p < 0.01), and had higher levels of positive affect compared to non-cancer participants. Amongst cancer participants, the majority (80.3%) reported COVID-19, not their cancer, as their priority during the first wave of the pandemic and females reported higher levels of stress compared to males. In conclusion, cancer participants appeared to have handled the unpredictable nature of the first wave of the pandemic efficiently, with a positive attitude towards an unknown and otherwise frightening situation. Larger, cancer population specific and longitudinal studies are warranted to ensure adequate medical and psychological care for cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.