Diethylhexyl phthalate (DEHP) is an estrogen-like compound widely used as a commercial plasticizer and present in medical devices, tubing, food containers and packaging. It is considered an endocrine disruptor and studies on experimental animals showed that exposure to DEHP can alter the function of several organs including liver, kidneys, lungs and reproductive system, particularly the developing testes of prenatal and neonatal males. Exposure to DEHP has been proposed as a potential human health hazard. This study assessed the effects of DEHP on folliculogenesis and oocyte maturation using the mouse as the experimental model. Newborn female mice were hypodermically injected with DEHP at doses of 20 and 40 μg/kg per body weight following different exposure regimens during the weaning period. We found that DEHP altered both folliculogenesis and oocyte development. In particular, DEHP exposure significantly decreased the number of the primordial follicles at pubertal and adult age by possibly accelerating the rate of follicle recruitment dynamics, reduced and/or delayed the level of imprinted gene methylation in the oocytes and increased metaphase II spindle abnormalities in oocytes matured in vitro. Furthermore, the weight of pups and litter size of mothers exposed to DEHP were significantly lower than controls. Finally, the number of primordial follicles appeared significantly reduced also in the F1 offspring at the adult age. These results show that DEHP may have a number of adverse effects on oogenesis, especially when exposure occurs during early postnatal age, arising concerns about the exposure of human female infants and children to this compound.
Bisphenol A (BPA), a chemical used in many consumer products, interferes with the endocrine system of mammals, including humans. The aim of the present study was to investigate the effect of BPA on spermatogenesis and semen quality. The objective of this study was to assess the effects of BPA on mouse spermatogenesis. CD1 mice were used in all experiments. Mice were treated with different doses of BPA (0, 20 and 40 μg kg⁻¹ day⁻¹ from postnatal Day (PND) 3 to PND21, PND 35 or PND49. After 5 weeks BPA treatment, oestrogen receptor α expression was increased in mouse testis, whereas the meiotic progression of germ cells was slowed. Thus, both the quality and quantity of spermatozoa were decreased in 7-week-old mice. However, BPA had no effect on DNA methylation of imprinted genes such as Igf2, Igf2r, Peg3 and H19, in germ cells. In addition, exposure of male mice to BPA resulted in abnormal offspring that were smaller with a low-quality pelage when they were 35 days old. In conclusion, BPA hampers spermatogenesis and the subsequent development of offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.