Systemic fungal infections are an increasingly prevalent health problem, especially among immunocompromised patients. Antifungal drug development lags far behind in comparison to other types of antimicrobial drugs. Current commercially available antifungals are limited by their insufficient potency, side effects, drug-drug interactions, developing drug-resistance, and narrow formulation options. Here, we report the preparation and evaluation of two novel PEG amide conjugates of amphotericin B (AMB (1)): AB1 (4) and AM2 (5). These compounds are nonlabile, they are prepared in only two and three synthetic steps, respectively, and they show antifungal activity against a wide range of clinical fungal isolates. Their toxicity is significantly lower, and their water solubility is up to 5000-fold higher than that of AMB (1). In vivo efficacy studies in a mouse model of systemic candidiasis showed that AM2 (5) successfully cured all the mice at concentrations above 3.5 mg/kg body weight. In conclusion, these properties make AB1 (4) and AM2 (5) promising candidates for clinical use.
Complete tumor removal during surgery has a great impact on patient survival. To that end, the surgeon should detect the tumor, remove it and validate that there are no residual cancer cells left behind. Residual cells at the incision margin of the tissue removed during surgery are associated with tumor recurrence and poor prognosis for the patient. In order to remove the tumor tissue completely with minimal collateral damage to healthy tissue, there is a need for diagnostic tools that will differentiate between the tumor and its normal surroundings.Methods: We designed, synthesized and characterized three novel polymeric Turn-ON probes that will be activated at the tumor site by cysteine cathepsins that are highly expressed in multiple tumor types. Utilizing orthotopic breast cancer and melanoma models, which spontaneously metastasize to the brain, we studied the kinetics of our polymeric Turn-ON nano-probes.Results: To date, numerous low molecular weight cathepsin-sensitive substrates have been reported, however, most of them suffer from rapid clearance and reduced signal shortly after administration. Here, we show an improved tumor-to-background ratio upon activation of our Turn-ON probes by cathepsins. The signal obtained from the tumor was stable and delineated the tumor boundaries during the whole surgical procedure, enabling accurate resection.Conclusions: Our findings show that the control groups of tumor-bearing mice, which underwent either standard surgery under white light only or under the fluorescence guidance of the commercially-available imaging agents ProSense® 680 or 5-aminolevulinic acid (5-ALA), survived for less time and suffered from tumor recurrence earlier than the group that underwent image-guided surgery (IGS) using our Turn-ON probes. Our "smart" polymeric probes can potentially assist surgeons' decision in real-time during surgery regarding the tumor margins needed to be removed, leading to improved patient outcome.
We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α-alkylated carbonyl products are formed in up to 93% yield. An ionic mechanism is inferred based on meticulous analysis, NMR studies, trapping and crossover experiments, and computational studies.
TEMPO catalyzes the direct oxidation of aldehydes to mixed anhydrides in the presence of a carboxylic acid. The anhydrides can be converted in situ to esters, secondary, tertiary or Weinreb amides in high yield. Oxidation of the aldehyde directly to 2-propyl esters is also possible using only catalytic amounts of acid. The oxidation reactions are rapid and take place under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.