The combination of electrospinning and extrusion based 3D printing opens new pathways for micro- and nanofabrication in a wide range of applications. The fast production of a highly stable self-standing polystyrene 3D structure is demonstrated.
The combination of electrospinning with 3D printing technology opens new pathways for nano- and microfabrication, which can be applied in a wide range of application. This simple and inexpensive method was proven to fabricate 3D fibrous polystyrene structures with controlled morphology and micro to nano-fibre diameter. The controllable movement of the nozzle allows precise positioning of the deposition area of the fibres during electrospinning. A programmed circular nozzle pattern results in the formation of 3D polystyrene cylinder shapes with fibre diameters down to 560 nm. The assembly of the fibrous structures starts instantaneously, and a 4 cm tall and 5 cm wide sample can be produced within a 10-minute electrospinning process. The product exhibits high stability at ambient conditions. The shape, size, and thickness of fibrous polystyrene structures can be easily controlled by tuning the process parameters. It is assumed that the build-up of 3D fibrous polystyrene structure strongly depends on charge induction and polarization of the electrospun fibres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.