The combination of electrospinning and extrusion based 3D printing opens new pathways for micro- and nanofabrication in a wide range of applications. The fast production of a highly stable self-standing polystyrene 3D structure is demonstrated.
The combination of electrospinning with 3D printing technology opens new pathways for nano- and microfabrication, which can be applied in a wide range of application. This simple and inexpensive method was proven to fabricate 3D fibrous polystyrene structures with controlled morphology and micro to nano-fibre diameter. The controllable movement of the nozzle allows precise positioning of the deposition area of the fibres during electrospinning. A programmed circular nozzle pattern results in the formation of 3D polystyrene cylinder shapes with fibre diameters down to 560 nm. The assembly of the fibrous structures starts instantaneously, and a 4 cm tall and 5 cm wide sample can be produced within a 10-minute electrospinning process. The product exhibits high stability at ambient conditions. The shape, size, and thickness of fibrous polystyrene structures can be easily controlled by tuning the process parameters. It is assumed that the build-up of 3D fibrous polystyrene structure strongly depends on charge induction and polarization of the electrospun fibres.
This paper reports on the rapid fabrication of radially-aligned, three-dimensional conical structures by electrospinning. Three different polymers, Polyvinylpyrrolidone, Polystyrene and Polyacrylonitrile were used to electrospin the cones. These cone structures are spreading out from a vertical conductive pillar, which can be arbitrarily placed on specific part of the collector. The lower part of the cone is clearly defined on the collector, and the cone has a relatively uniform radius around the pillar. The cones are constituted of fibers that are radially aligned towards the top of the pillar, but there is no apex and the fibers fall flat on the top of the pillar surface. A parametric study has been performed to investigate the effects of the pillar morphology (height and thickness) and the electrospinning parameters (applied voltage and working distance) on the overall shape and size of the cone structure, as well as the fiber alignment. The pillar morphology influences directly the cone diameter and height. The electrospinning parameters have little effect on the cone structure. The formation mechanism has been identified to be related to the shape of the electric field, which has been systematically simulated to understand the effect of the electric field lines on the final dimensions of the cone structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.