We report on ultrafast artificial laser neurons and on their potentials for future neuromorphic (brain-like) photonic information processing systems. We introduce our recent and ongoing activities demonstrating controllable excitation of spiking signals in optical neurons based upon Vertical-Cavity Surface Emitting Lasers (VCSEL-Neurons). These spiking regimes are analogous to those exhibited by biological neurons, but at sub-nanosecond speeds (>7 orders of magnitude faster). We also describe diverse approaches, based on optical or electronic excitation techniques, for the activation/inhibition of sub-ns spiking signals in VCSEL-Neurons. We report our work demonstrating the communication of spiking patterns between VCSEL-Neurons towards future implementations of optical neuromorphic networks. Furthermore, new findings show that VCSEL-Neurons can perform multiple neuro-inspired spike processing tasks. We experimentally demonstrate photonic spiking memory modules using single and mutually-coupled VCSEL-Neurons. Additionally, the ultrafast emulation of neuronal circuits in the retina using VCSEL-Neuron systems is demonstrated experimentally for the first time to our knowledge. Our results are obtained with off-the-shelf VCSELs operating at the telecom wavelengths of 1310 and 1550 nm. This makes our approach fully compatible with current optical network and data centre technologies; hence offering great potentials for future ultrafast neuromorphic laser-neuron networks for new paradigms in brain-inspired computing and Artificial Intelligence.
We report experimentally on the electricallycontrolled, tunable and repeatable neuron-like spiking regimes generated in an optically-injected vertical-cavity surface-emitting laser (VCSEL) operating at the telecom wavelength of 1300 nm. These fast spiking dynamics (obtained at sub-nanosecond speed rates) demonstrate different behaviours observed in biological neurons such as thresholding, phasic and tonic spiking and spike rate and spike latency coding. The spiking regimes are activated in response to external stimuli (with controlled strengths and temporal duration) encoded in the bias current applied to a VCSEL subject to continuous wave (CW) optical injection (OI). These results reveal the prospect for fast (>7 orders of magnitude faster than neurons), novel, electrically-controlled spiking photonic modules for future neuromorphic computing platforms.
The high detection sensitivity and timing resolution afforded by single-photon lidar has made this approach a candidate for a range of challenging applications such as imaging in turbid underwater scenarios and free-space imaging through obscurants.
Biological retinal neuronal circuits are emulated using a system of connected 1550 nm Vertical-Cavity Surface-Emitting Laser (VCSEL)-neurons. Spiking and non-spiking neuronal responses are reproduced at ultrafast speed (>7 orders of magnitude faster than neurons) with prospects for novel braininspired computing platforms and Artificial Intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.