Exhaust lines of cars have been strongly evolving during the last decade to meet the various requirements of the automotive industry and the new environment regulations. This development tends to favour stainless steel grades to replace cast iron for the exhaust manifold and aluminized low carbon steel for pipes and mufflers. Among the various stainless steel grades, the proportion of ferritic grade increases for the hot part of the exhaust system as its price is lower and more stable than austenitic or refractory grades, and as it exhibits a better resistance to cyclic oxidation.
A large and rapid development of stainless ferritic grades has been based on Ti and Nb stabilization. Adding niobium presents many advantages for corrosion resistance, deep‐drawability, and mainly creep resistance at high temperature. The paper is focused on stainless steel with 14 wt% chromium, stabilized with Nb. Intermetallic precipitation is studied after a 100 h holding time at different temperatures (sag tests). It is shown that, depending on the test temperature and on the chemical composition of the steel, Fe2Nb or Fe2Nb3 intermetallic particles can precipitate, which affects the creep resistance: Fe2Nb3 being more stable at higher temperature. Some impacts on the alloy design dedicated to exhaust line application are presented as a conclusion of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.