Silvopastoral systems can be a good alternative for sustainable livestock production because they can provide ecosystem services and improve animal welfare. Most farm animals live in groups and the social organization and interactions between individuals have an impact on their welfare. Therefore, the objective of this study was to describe and compare the social behaviour of cattle (Bos indicus × Bos taurus) in a silvopastoral system based on a high density of leucaena (Leucaena leucocephala) combined with guinea grass (Megathyrsus maximus), star grass (Cynodon nlemfuensis) and some trees; with a monoculture system with C. nlemfuensis, in the region of Merida, Yucatán. Eight heifers in each system were observed from 0730 to 1530 h each day for 12 consecutive days during the dry season and 12 consecutive days during the rainy season. The animals followed a rotation between three paddocks, remaining 4 days in each paddock. The vegetation was characterized in the paddocks of the silvopastoral system to estimate the average percentage of shade provided. To make a comparison between systems, we used a t test with group dispersion, and Mann-Whitney tests with the frequency of affiliative and agonistic behaviours. We assessed differences in linearity and stability of dominance hierarchies using Landau's index and Dietz R-test, respectively. The distance of cows with respect to the centroid of the group was shorter, and non-agonistic behaviours were 62% more frequent in the intensive silvopastoral system than in the monoculture one. Heifers in the silvopastoral system had a more linear and non-random dominance hierarchy in both seasons (dry season: h' = 0.964; rainy season: h' = 0.988), than heifers in the monoculture system (dry season: h' = 0.571, rainy season: h' = 0.536). The dominance hierarchy in the silvopastoral system was more stable between seasons (R-test = 0.779) than in the monoculture system (R-test = 0.224). Our results provide the first evidence that heifers in the silvopastoral system maintain more stable social hierarchies and express more sociopositive behaviours, suggesting that animal welfare was enhanced.
The problem of a cylindrical falling film, descending vertically outside an infinitely long cylinder is considered. The linear stability of the fully developed flow is studied, first with a perturbation technique for small wavenumbers, and then by direct numerical computation. The numerical results are in agreement with other published values for the cylindrical jet and flat plate limits. The study shows that the cylindrical falling film is unstable for all Reynolds numbers, Weber numbers and radius ratios. Stability and amplification curves are calculated for different values of the parameters. With increasing curvature of the film the range of unstable wavenumbers and the wavenumber of the most amplified wave increase. For low curvature the wavenumber of the most amplified wave decreases with Reynolds number or Weber number, while for high curvatures it increases.
Intensive silvopastoral systems (ISS) are a sustainable alternative to monoculture systems (MS). The presence of trees and legumes improves animal welfare due to the increased food quality and quantity and the presence of shade while providing a variety of environmental services. As cattle behaviour is greatly affected by environmental conditions, knowledge on the behavioural trade-offs that cattle make to meet their demands while foraging in different grazing systems is important, as this will help us understand the perceived advantages of ISS. This pilot study assessed the behaviour of heifers in an ISS (n=8 heifers) and MS (n=8 heifers) in the Mexican tropics during the dry and rainy seasons, and its relationship with forage availability, mean travelled distance and the temperature humidity index (THI). In both seasons, daily foraging times were longer in the MS than the ISS (P<0.01). The duration of rumination was higher for ISS (P<0.01) and the duration of lying was higher for the dry season (P<0.05). The decrease in foraging times in relation to THI was significantly higher in the ISS than in the MS (mean slope±SE: ISS=-4.64±0.34; MS=-2.34±0.22; t=-14.20, P<0.001). The results suggest that the forage availability and access to shade in the ISS allow cattle to rest longer and increase rumination, whereas cattle in MS spend more time searching for food and foraging at times of the day were the temperatures were higher as a compensatory strategy, which potentially decreases cattle's welfare and production qualities when compared with the ISS. In conclusion, ISS are likely to generate positive behavioural trade-offs that result in better welfare conditions and higher productive potential.
This paper presents numerical results for two-dimensional steady-state natural convection in a square cavity. The upper and lower walls are kept at different constant temperatures, whereas the lateral walls have certain thickness and thermal conductivity and are externally insulated. Under these conditions we deal with a conjugate natural convection problem in which the heat conduction in the lateral walls is coupled with the internal convection. The continuity, momentum and energy equations were solved by using the finite volume method. The results here presented include: (i) the temperature distribution in the lateral walls and in the fluid, (ii) the velocity field, and (iii) the average Nusselt number at the upper and lower walls. It was found that the steady state fluid flow is strongly dependent on the initial temperature condition, when the fluid is initially at rest. The PIV technique allowed us to get some experimental data by measuring the velocity field in a two-dimensional square cavity. A good agreement between numerical and experimental results was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.