The descending contralateral movement detector (DCMD), an identified descending interneuron in the brain of the locust Schistocerca gregaria has been investigated by using light and electron microscopy. We describe the fine structure, distribution and numbers of synapses that it receives from another identified brain neuron, the lobular giant movement detector (LGMD), and from unidentified neurons. The DCMD dendrites emerging from the integrative segment vary in form and number between individuals and sexes but always form a flattened dendritic domain. The arborizations and the integrative segment appear to be exclusively postsynaptic. Two types of synaptic contacts (Type 1 and 2) onto the DCMD can be discerned as having either round (Type 1) or pleiomorphic synaptic vesicles (Type 2) and by large (Type 1) or small (Type 2) subsynaptic appositions. Contact zones of Type 1 synapses are smaller than those of Type 2. LGMD-synapses are of Type 1 and occur intermingled with presynaptic sites of unidentified units. Some branches of the DCMD receiving input from unidentified units are devoid of contacting LGMD processes. Synapses of both types are randomly distributed over the DCMD integrative segment and at fibres with similar sizes. Type 1 synapses are much more frequent than Type 2 synapses and their number is negatively correlated with fibre diameter. For a whole DCMD dendritic arborization, a total of 8500 active zones of chemical synapses has been calculated, including a minimum of 2250 LGMD-synapses and about 1000 Type 2 synapses. The DCMD may thus receive a considerable amount of input from as yet unidentified neurons.
Conventional electron microscopy combined with cobalt staining techniques has revealed chemical synapses and gap junction-like areas denoting specific regions of contact between two large, uniquely identifiable visual interneurons in the brain of the locust Schistocerca gregaria. The morphological demonstration of chemical synapses suggests that one of the two neurons, the 'descending contralateral movement detector', receives a chemically mediated input from its main presynaptic element, the 'lobula giant movement detector'. This observation supports recent electrophysiological studies demonstrating synaptic delays between the two cells, characteristic of chemical synapses. However, regions with the appearance of gap junctions are also observed. This corroborates earlier work which suggested that these two neurons are coupled electrically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.