The possible relationship between erythrocyte antigens and the presence of malaria infection by P. vivax and P. falciparurn was sought in four different ethnic groups of two departments of Colombia. Malaria infection by P. falciparum was found in 91.4% of malaria infected blacks. No significant differences were found between the presence of malaria infection and ABO antigens. In the other blood groups, it was observed that groups MNSs conferred black people a greater Rr for malaria by both species of Plasmodium and that Duffy-negative blacks and indians appeared to be resistant to P. vivax infection. A predominance of P. vivax infection was observed in Katio indians while P.falciparum was predominant in Kuna indians; the reason for this finding still needs to be explored.
HLA-B is the most polymorphic of the major histocompatibility complex classical class I loci. This polymorphism is mainly in exons 2 and 3, which code for the molecule's alpha 1 and alpha 2 domains and include the antigenic peptide binding site. Recent studies have indicated that not only exons but also the intron 2 region may be involved in the generation of certain HLA-B alleles such as B*3906 and B*1522. To study the degree of intron 2 participation and the mechanisms that generate polymorphism at the HLA-B locus, intron 1 and 2 sequences from the HLA-B35, -B5, -B16 and -B15 groups of alleles were obtained. A group-specific intronic polymorphism was found: namely, B*5301 shows intron 1 and 2 sequences identical to those found in all B35 alleles studied. On the other hand, B*5101 and B*52012 show the same intron 1 and 2 sequences and their intron 1 is the same as that found in the B35 group. This suggests that B5 and B35 groups of alleles may have arisen from a common ancestor. All known B16 alleles show the same introns 1 and 2, with the exception of B*39061 and B*39062, and all B15 alleles also bear the same introns 1 and 2, with the exception of B*1522. Variability at intron 1 is more restricted than at intron 2, and the use of intron 1 for HLA-B allele phylogenetic analysis is better for grouping alleles of a postulated common origin. In conclusion, there is a remarkable conservation of intronic sequences within related HLA-B alleles, which probably reflects a common origin and perhaps a selective force avoiding DNA changes. Intronic sequences are also potentially useful to design DNA typing strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.