A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only the constraints, in order to improve feasibility. In the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. The second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.
Interior Point Methods (IPM) rely on the Newton method for solving systems of nonlinear equations. Solving the linear systems which arise from this approach is the most computationally expensive task of an interior point iteration. If, due to problem's inner structure, there are special techniques for efficiently solving linear systems, IPMs enjoy fast convergence and are able to solve large scale optimization problems. It is tempting to try to replace the Newton method by quasi-Newton methods. Quasi-Newton approaches to IPMs either are built to approximate the Lagrangian function for nonlinear programming problems or provide an inexpensive preconditioner. In this work we study the impact of using quasi-Newton methods applied directly to the nonlinear system of equations for general quadratic programming problems. The cost of each iteration can be compared to the cost of computing correctors in a usual interior point iteration. Numerical experiments show that the new approach is able to reduce the overall number of matrix factorizations and is suitable for a matrix-free implementation.
Many derivative-free methods for constrained problems are not efficient for minimizing functions on "thin" domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. An algorithm that handles efficiently this case is proposed in this paper. The main iteration is splitted into two steps: restoration and minimization. In the restoration step the aim is to decrease infeasibility without evaluating the objective function. In the minimization step the objective function f is minimized on a relaxed feasible set. A global minimization result will be proved and computational experiments showing the advantages of this approach will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.