A number of phytoecdysteroid compounds, such as ecdysterone, polipodin V, 2-deoxy-20-hydroxyecdysone, integristeron A and 2-deoxydizon were isolated from Stachys hissarica plant and their structures were confirmed by NMR, mass and IR spectroscopy. In addition, the biological activity of the S. hissarica plant's extract was tested on rats for wound healing activity. It was shown that the extract at repeated oral (per os) administration at a dose of 10 mg/kg speeds up the healing process of linear skin wounds in rats. The wound-healing activity of S. hissarica extract is confirmed to be effective and exceeds known drug methyluracil (2,4-dioxo-6-methyl-1,2,3,4-tetrahydropyrimidine), especially in case of alloxan induced diabetic animals.
Aims: The aim of present study was to isolate the phytoedysteroids from aerial part of Silene claviformis (Caryophyllaceae) and investigate their biological activity.
Place and Duration of Study: The investigation were carried out during 2019 and 2020 at laboratory of the chemistry of glycosides and department of the pharmacological and toxicology of Institute of the Chemistry of Plant Substances AS RUz, Tashkent, Uzbekistan.
Methodology: The phytoecdysteroids were isolated from aerial part of Silene claviformis using chromatographic methods. Thin-layer chromatography made on Silufol UV-254 and Merck plates, Fluka Analytical Germany, by spraying with alcohol solution of vanillin and heating for 1-2 minutes for 90-1000, UV lamp light at 254 nm and 365 nm. Their structures were confirmed by NMR and IR spectroscopy. Sum of phytoecdysteroids was administered at a dose of 10 mg/kg orally. The data obtained during the experiments were processed and analyzed by the method of variation statistics using the Student t-criterion.
Results: Silene claviformis contains 2-deoxyecdysterone (1), polypodine B (2), 20-hydroxyecdysone (3), ecdysterone-20,22-acetalisovaleric aldehyde (4),integristeron A (5),cyasterone (6), ecdysterone-20,22-acetalisovalerian (7), 2-deoxy-α-ecdysone (8). The compounds 2 and 6 are reported for the first time from this genus. The biological activity (stress-protective effect) of the mentioned phytoecdysteroids studied for the first time. These compounds were tested on male mice for their biological activities and results showed that, the adrenal gland mass increased in relation to the adrenal gland mass of intact animals by 42.6%, they showed a significant decrease in the content of ascorbic acid and cholesterol by 56.5 and 49.1%, respectively. A significant decrease in glycogen content (by 30.1%) and a noticeable activation of lipid peroxidation processes were noted in the liver, as indicated by an increase of 69.2% in the content of malondialdehyde in the organ.
Conclusion: This is the first study reporting an orally biological investigation for Silene claviformis. The sum of phytoecdysteroids showed potent stress-protective activity. The stress-protective effect of phytoecdysteroids was more pronounced in compared the eleutherococcus extract.
In thepresent investigation isolation of chemical compounds was carried out from the aerial part of Silene tomentella, an evergreen member of the family Caryophyllaceae, using column chromatography. Identification of chemical compounds was done by various MP, TLC, IR, NMR techniques. The presence of the bioactive compound D-pinitol in this plant is being reported for the first time. Under the influence of D-pinitol, a clear tendency towards normalization of the glycogen content in the liver was also noted (it was only 10.4% lower than in intact animals). In the liver of animals, a rather sharp decrease in the content of glycogen was noted – by 63.5%, and a decrease in the activity of enzymes of the antioxidant defense of the body, characteristic of developing diabetes: SOD – by 35.1, and catalase – by 32.4%. Prophylactically – therapeutic administration of D- pinitol, which exhibits a pronounced ability to inhibit free radical oxidation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.