BackgroundNeurogenic bladder dysfunction represents one of the most common and devastating sequelae of traumatic spinal cord injury (SCI). As early prediction of bladder outcomes is essential to counsel patients and to plan neurourological management, we aimed to develop and validate a model to predict urinary continence and complete bladder emptying 1 y after traumatic SCI.Methods and FindingsUsing multivariate logistic regression analysis from the data of 1,250 patients with traumatic SCI included in the European Multicenter Spinal Cord Injury study, we developed two prediction models of urinary continence and complete bladder emptying 1 y after traumatic SCI and performed an external validation in 111 patients. As predictors, we evaluated age, gender, and all variables of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) and of the Spinal Cord Independence Measure (SCIM). Urinary continence and complete bladder emptying 1 y after SCI were assessed through item 6 of SCIM. The full model relies on lower extremity motor score (LEMS), light-touch sensation in the S3 dermatome of ISNCSI, and SCIM subscale respiration and sphincter management: the area under the receiver operating characteristics curve (aROC) was 0.936 (95% confidence interval [CI]: 0.922–0.951). The simplified model is based on LEMS only: the aROC was 0.912 (95% CI: 0.895–0.930). External validation of the full and simplified models confirmed the excellent predictive power: the aROCs were 0.965 (95% CI: 0.934–0.996) and 0.972 (95% CI 0.943–0.999), respectively. This study is limited by the substantial number of patients with a missing 1-y outcome and by differences between derivation and validation cohort.ConclusionsOur study provides two simple and reliable models to predict urinary continence and complete bladder emptying 1 y after traumatic SCI. Early prediction of bladder function might optimize counselling and patient-tailored rehabilitative interventions and improve patient stratification in future clinical trials.
The anticonvulsant pregabalin promotes neural regeneration in a mouse model of spinal cord injury (SCI). We have also previously observed that anticonvulsants improve motor outcomes following human SCI. The present study examined the optimal timing and type of anticonvulsants administered in a large, prospective, multi-center, cohort study in acute SCI. Mixed-effects regression techniques were used to model total motor scores at 1, 3, 6, and 12 months post injury. We found that early (not late) administration of anticonvulsants significantly improved motor recovery (6.25 points over 1 year). The beneficial effect of anticonvulsants remained significant after adjustment for differences in 1-month motor scores and injury characteristics. A review of a subset of patients revealed that gabapentinoids were the most frequently administrated anticonvulsant. Together with preclinical findings, intervention with anticonvulsants represents a potential pharmacological strategy to improve motor function after SCI.
Background Approximately 60% of patients suffering from acute spinal cord injury (SCI) develop pain within days to weeks after injury, which ultimately persists into chronic stages. To date, the consequences of pain after SCI have been largely examined in terms of interfering with quality of life. Objective The objective of this study was to examine the effects of pain and pain management on neurological recovery after SCI. Methods We analyzed clinical data in a prospective multicenter observational cohort study in patients with SCI. Using mixed effects regression techniques, total motor and sensory scores were modelled at 1, 3, 6, and 12 months postinjury. Results A total of 225 individuals were included in the study (mean age: 45.8 ± 18 years, 80% male). At 1 month postinjury, 28% of individuals with SCI reported at- or below-level neuropathic pain. While pain classification showed no effect on neurological outcomes, individuals administered anticonvulsant medications at 1 month postinjury showed significant reductions in pain intensity (2 points over 1 year; P < .05) and greater recovery in total motor scores (7.3 points over 1 year; P < .05). This drug effect on motor recovery remained significant after adjustment for injury level and injury severity, pain classification, and pain intensity. Conclusion While initial pain classification and intensity did not reveal an effect on motor recovery following acute SCI, anticonvulsants conferred a significant beneficial effect on motor outcomes. Early intervention with anticonvulsants may have effects beyond pain management and warrant further studies to evaluate the therapeutic effectiveness in human SCI.
Background and Purpose-Platelet-activating factor (PAF) is involved in the development of secondary brain damage after ischemic and traumatic brain injury. On the basis of data from studies in peripheral organs, we hypothesized that PAF-mediated effects after cerebral injury could be secondary to alterations in cerebral microcirculation. Methods-Changes in cerebral microcirculation focusing on leukocyte-endothelium interactions were quantified with the use of a closed cranial window model in Sprague-Dawley rats (nϭ33) by means of intravital fluorescence microscopy. The brain surface was superfused with PAF in concentrations from 10 Ϫ3 (nϭ3) to 10 Ϫ12 mol/L (nϭ6) for 20 minutes (5 mL/h). Results-PAF 10Ϫ4 mol/L (nϭ4) increased the number of rolling and adherent leukocytes in venules from 9.7Ϯ0.4 to 19.7Ϯ2.3 cells/100 mm ⅐ min (PϭNS versus control) and from 2.2Ϯ0.5 to 4.3Ϯ0.7 cells/100 mm ⅐ min (PϽ0.05 versus control), respectively. Lower concentrations did not elicit leukocyte-endothelium interactions. Vessel diameters remained unchanged except for a transient increase of arteriolar diameters during superfusion with PAF 10 Ϫ4 and 10
Future studies must note that the reliability of EPT differs between dermatomes in healthy participants. Furthermore, at and below the level of the lesion, spontaneous recovery of sensory perception is poor within the first 6 months after SCI. Based on subgroup analyses, if a translational trial aims to improve sensory perception around the level of the lesion, sensory-incomplete tetraplegic patients could be included. These patients show poor spontaneous recovery, and the EPT may detect subtle changes in perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.